ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreldm Unicode version

Theorem elreldm 4950
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )

Proof of Theorem elreldm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 4726 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 ssel 3218 . . . . 5  |-  ( A 
C_  ( _V  X.  _V )  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
31, 2sylbi 121 . . . 4  |-  ( Rel 
A  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
4 elvv 4781 . . . 4  |-  ( B  e.  ( _V  X.  _V )  <->  E. x E. y  B  =  <. x ,  y >. )
53, 4imbitrdi 161 . . 3  |-  ( Rel 
A  ->  ( B  e.  A  ->  E. x E. y  B  =  <. x ,  y >.
) )
6 eleq1 2292 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  <->  <. x ,  y
>.  e.  A ) )
7 vex 2802 . . . . . . 7  |-  x  e. 
_V
8 vex 2802 . . . . . . 7  |-  y  e. 
_V
97, 8opeldm 4926 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
106, 9biimtrdi 163 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  x  e.  dom  A ) )
11 inteq 3926 . . . . . . . 8  |-  ( B  =  <. x ,  y
>.  ->  |^| B  =  |^| <.
x ,  y >.
)
1211inteqd 3928 . . . . . . 7  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  |^| |^|
<. x ,  y >.
)
137, 8op1stb 4569 . . . . . . 7  |-  |^| |^| <. x ,  y >.  =  x
1412, 13eqtrdi 2278 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  x )
1514eleq1d 2298 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( |^| |^| B  e.  dom  A  <->  x  e.  dom  A ) )
1610, 15sylibrd 169 . . . 4  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1716exlimivv 1943 . . 3  |-  ( E. x E. y  B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
185, 17syli 37 . 2  |-  ( Rel 
A  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1918imp 124 1  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799    C_ wss 3197   <.cop 3669   |^|cint 3923    X. cxp 4717   dom cdm 4719   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-int 3924  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-dm 4729
This theorem is referenced by:  1stdm  6328  fundmen  6959
  Copyright terms: Public domain W3C validator