| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elreldm | Unicode version | ||
| Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.) |
| Ref | Expression |
|---|---|
| elreldm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 4726 |
. . . . 5
| |
| 2 | ssel 3218 |
. . . . 5
| |
| 3 | 1, 2 | sylbi 121 |
. . . 4
|
| 4 | elvv 4781 |
. . . 4
| |
| 5 | 3, 4 | imbitrdi 161 |
. . 3
|
| 6 | eleq1 2292 |
. . . . . 6
| |
| 7 | vex 2802 |
. . . . . . 7
| |
| 8 | vex 2802 |
. . . . . . 7
| |
| 9 | 7, 8 | opeldm 4926 |
. . . . . 6
|
| 10 | 6, 9 | biimtrdi 163 |
. . . . 5
|
| 11 | inteq 3926 |
. . . . . . . 8
| |
| 12 | 11 | inteqd 3928 |
. . . . . . 7
|
| 13 | 7, 8 | op1stb 4569 |
. . . . . . 7
|
| 14 | 12, 13 | eqtrdi 2278 |
. . . . . 6
|
| 15 | 14 | eleq1d 2298 |
. . . . 5
|
| 16 | 10, 15 | sylibrd 169 |
. . . 4
|
| 17 | 16 | exlimivv 1943 |
. . 3
|
| 18 | 5, 17 | syli 37 |
. 2
|
| 19 | 18 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-int 3924 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-dm 4729 |
| This theorem is referenced by: 1stdm 6328 fundmen 6959 |
| Copyright terms: Public domain | W3C validator |