ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreldm Unicode version

Theorem elreldm 4830
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )

Proof of Theorem elreldm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 4611 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 ssel 3136 . . . . 5  |-  ( A 
C_  ( _V  X.  _V )  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
31, 2sylbi 120 . . . 4  |-  ( Rel 
A  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
4 elvv 4666 . . . 4  |-  ( B  e.  ( _V  X.  _V )  <->  E. x E. y  B  =  <. x ,  y >. )
53, 4syl6ib 160 . . 3  |-  ( Rel 
A  ->  ( B  e.  A  ->  E. x E. y  B  =  <. x ,  y >.
) )
6 eleq1 2229 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  <->  <. x ,  y
>.  e.  A ) )
7 vex 2729 . . . . . . 7  |-  x  e. 
_V
8 vex 2729 . . . . . . 7  |-  y  e. 
_V
97, 8opeldm 4807 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
106, 9syl6bi 162 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  x  e.  dom  A ) )
11 inteq 3827 . . . . . . . 8  |-  ( B  =  <. x ,  y
>.  ->  |^| B  =  |^| <.
x ,  y >.
)
1211inteqd 3829 . . . . . . 7  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  |^| |^|
<. x ,  y >.
)
137, 8op1stb 4456 . . . . . . 7  |-  |^| |^| <. x ,  y >.  =  x
1412, 13eqtrdi 2215 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  x )
1514eleq1d 2235 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( |^| |^| B  e.  dom  A  <->  x  e.  dom  A ) )
1610, 15sylibrd 168 . . . 4  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1716exlimivv 1884 . . 3  |-  ( E. x E. y  B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
185, 17syli 37 . 2  |-  ( Rel 
A  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1918imp 123 1  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726    C_ wss 3116   <.cop 3579   |^|cint 3824    X. cxp 4602   dom cdm 4604   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-int 3825  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614
This theorem is referenced by:  1stdm  6150  fundmen  6772
  Copyright terms: Public domain W3C validator