ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreldm Unicode version

Theorem elreldm 4888
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )

Proof of Theorem elreldm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 4666 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 ssel 3173 . . . . 5  |-  ( A 
C_  ( _V  X.  _V )  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
31, 2sylbi 121 . . . 4  |-  ( Rel 
A  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
4 elvv 4721 . . . 4  |-  ( B  e.  ( _V  X.  _V )  <->  E. x E. y  B  =  <. x ,  y >. )
53, 4imbitrdi 161 . . 3  |-  ( Rel 
A  ->  ( B  e.  A  ->  E. x E. y  B  =  <. x ,  y >.
) )
6 eleq1 2256 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  <->  <. x ,  y
>.  e.  A ) )
7 vex 2763 . . . . . . 7  |-  x  e. 
_V
8 vex 2763 . . . . . . 7  |-  y  e. 
_V
97, 8opeldm 4865 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
106, 9biimtrdi 163 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  x  e.  dom  A ) )
11 inteq 3873 . . . . . . . 8  |-  ( B  =  <. x ,  y
>.  ->  |^| B  =  |^| <.
x ,  y >.
)
1211inteqd 3875 . . . . . . 7  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  |^| |^|
<. x ,  y >.
)
137, 8op1stb 4509 . . . . . . 7  |-  |^| |^| <. x ,  y >.  =  x
1412, 13eqtrdi 2242 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  x )
1514eleq1d 2262 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( |^| |^| B  e.  dom  A  <->  x  e.  dom  A ) )
1610, 15sylibrd 169 . . . 4  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1716exlimivv 1908 . . 3  |-  ( E. x E. y  B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
185, 17syli 37 . 2  |-  ( Rel 
A  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1918imp 124 1  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760    C_ wss 3153   <.cop 3621   |^|cint 3870    X. cxp 4657   dom cdm 4659   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-int 3871  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-dm 4669
This theorem is referenced by:  1stdm  6235  fundmen  6860
  Copyright terms: Public domain W3C validator