ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreldm Unicode version

Theorem elreldm 4923
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )

Proof of Theorem elreldm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 4700 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2 ssel 3195 . . . . 5  |-  ( A 
C_  ( _V  X.  _V )  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
31, 2sylbi 121 . . . 4  |-  ( Rel 
A  ->  ( B  e.  A  ->  B  e.  ( _V  X.  _V ) ) )
4 elvv 4755 . . . 4  |-  ( B  e.  ( _V  X.  _V )  <->  E. x E. y  B  =  <. x ,  y >. )
53, 4imbitrdi 161 . . 3  |-  ( Rel 
A  ->  ( B  e.  A  ->  E. x E. y  B  =  <. x ,  y >.
) )
6 eleq1 2270 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  <->  <. x ,  y
>.  e.  A ) )
7 vex 2779 . . . . . . 7  |-  x  e. 
_V
8 vex 2779 . . . . . . 7  |-  y  e. 
_V
97, 8opeldm 4900 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
106, 9biimtrdi 163 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  x  e.  dom  A ) )
11 inteq 3902 . . . . . . . 8  |-  ( B  =  <. x ,  y
>.  ->  |^| B  =  |^| <.
x ,  y >.
)
1211inteqd 3904 . . . . . . 7  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  |^| |^|
<. x ,  y >.
)
137, 8op1stb 4543 . . . . . . 7  |-  |^| |^| <. x ,  y >.  =  x
1412, 13eqtrdi 2256 . . . . . 6  |-  ( B  =  <. x ,  y
>.  ->  |^| |^| B  =  x )
1514eleq1d 2276 . . . . 5  |-  ( B  =  <. x ,  y
>.  ->  ( |^| |^| B  e.  dom  A  <->  x  e.  dom  A ) )
1610, 15sylibrd 169 . . . 4  |-  ( B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1716exlimivv 1921 . . 3  |-  ( E. x E. y  B  =  <. x ,  y
>.  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
185, 17syli 37 . 2  |-  ( Rel 
A  ->  ( B  e.  A  ->  |^| |^| B  e.  dom  A ) )
1918imp 124 1  |-  ( ( Rel  A  /\  B  e.  A )  ->  |^| |^| B  e.  dom  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776    C_ wss 3174   <.cop 3646   |^|cint 3899    X. cxp 4691   dom cdm 4693   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-int 3900  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703
This theorem is referenced by:  1stdm  6291  fundmen  6922
  Copyright terms: Public domain W3C validator