Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elreldm | Unicode version |
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.) |
Ref | Expression |
---|---|
elreldm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4611 | . . . . 5 | |
2 | ssel 3136 | . . . . 5 | |
3 | 1, 2 | sylbi 120 | . . . 4 |
4 | elvv 4666 | . . . 4 | |
5 | 3, 4 | syl6ib 160 | . . 3 |
6 | eleq1 2229 | . . . . . 6 | |
7 | vex 2729 | . . . . . . 7 | |
8 | vex 2729 | . . . . . . 7 | |
9 | 7, 8 | opeldm 4807 | . . . . . 6 |
10 | 6, 9 | syl6bi 162 | . . . . 5 |
11 | inteq 3827 | . . . . . . . 8 | |
12 | 11 | inteqd 3829 | . . . . . . 7 |
13 | 7, 8 | op1stb 4456 | . . . . . . 7 |
14 | 12, 13 | eqtrdi 2215 | . . . . . 6 |
15 | 14 | eleq1d 2235 | . . . . 5 |
16 | 10, 15 | sylibrd 168 | . . . 4 |
17 | 16 | exlimivv 1884 | . . 3 |
18 | 5, 17 | syli 37 | . 2 |
19 | 18 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 cvv 2726 wss 3116 cop 3579 cint 3824 cxp 4602 cdm 4604 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-int 3825 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-dm 4614 |
This theorem is referenced by: 1stdm 6150 fundmen 6772 |
Copyright terms: Public domain | W3C validator |