| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elreldm | Unicode version | ||
| Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.) |
| Ref | Expression |
|---|---|
| elreldm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 4700 |
. . . . 5
| |
| 2 | ssel 3195 |
. . . . 5
| |
| 3 | 1, 2 | sylbi 121 |
. . . 4
|
| 4 | elvv 4755 |
. . . 4
| |
| 5 | 3, 4 | imbitrdi 161 |
. . 3
|
| 6 | eleq1 2270 |
. . . . . 6
| |
| 7 | vex 2779 |
. . . . . . 7
| |
| 8 | vex 2779 |
. . . . . . 7
| |
| 9 | 7, 8 | opeldm 4900 |
. . . . . 6
|
| 10 | 6, 9 | biimtrdi 163 |
. . . . 5
|
| 11 | inteq 3902 |
. . . . . . . 8
| |
| 12 | 11 | inteqd 3904 |
. . . . . . 7
|
| 13 | 7, 8 | op1stb 4543 |
. . . . . . 7
|
| 14 | 12, 13 | eqtrdi 2256 |
. . . . . 6
|
| 15 | 14 | eleq1d 2276 |
. . . . 5
|
| 16 | 10, 15 | sylibrd 169 |
. . . 4
|
| 17 | 16 | exlimivv 1921 |
. . 3
|
| 18 | 5, 17 | syli 37 |
. 2
|
| 19 | 18 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-int 3900 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-dm 4703 |
| This theorem is referenced by: 1stdm 6291 fundmen 6922 |
| Copyright terms: Public domain | W3C validator |