ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnpropg Unicode version

Theorem rnpropg 5109
Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Assertion
Ref Expression
rnpropg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }
)

Proof of Theorem rnpropg
StepHypRef Expression
1 df-pr 3600 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21rneqi 4856 . 2  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
3 rnsnopg 5108 . . . . 5  |-  ( A  e.  V  ->  ran  {
<. A ,  C >. }  =  { C }
)
43adantr 276 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. }  =  { C } )
5 rnsnopg 5108 . . . . 5  |-  ( B  e.  W  ->  ran  {
<. B ,  D >. }  =  { D }
)
65adantl 277 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. B ,  D >. }  =  { D } )
74, 6uneq12d 3291 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } ) )
8 rnun 5038 . . 3  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
9 df-pr 3600 . . 3  |-  { C ,  D }  =  ( { C }  u.  { D } )
107, 8, 93eqtr4g 2235 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  ( { <. A ,  C >. }  u.  {
<. B ,  D >. } )  =  { C ,  D } )
112, 10eqtrid 2222 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    u. cun 3128   {csn 3593   {cpr 3594   <.cop 3596   ran crn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-dm 4637  df-rn 4638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator