ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnpropg Unicode version

Theorem rnpropg 5090
Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Assertion
Ref Expression
rnpropg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }
)

Proof of Theorem rnpropg
StepHypRef Expression
1 df-pr 3590 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21rneqi 4839 . 2  |-  ran  { <. A ,  C >. , 
<. B ,  D >. }  =  ran  ( {
<. A ,  C >. }  u.  { <. B ,  D >. } )
3 rnsnopg 5089 . . . . 5  |-  ( A  e.  V  ->  ran  {
<. A ,  C >. }  =  { C }
)
43adantr 274 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. }  =  { C } )
5 rnsnopg 5089 . . . . 5  |-  ( B  e.  W  ->  ran  {
<. B ,  D >. }  =  { D }
)
65adantl 275 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. B ,  D >. }  =  { D } )
74, 6uneq12d 3282 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )  =  ( { C }  u.  { D } ) )
8 rnun 5019 . . 3  |-  ran  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )  =  ( ran  { <. A ,  C >. }  u.  ran  { <. B ,  D >. } )
9 df-pr 3590 . . 3  |-  { C ,  D }  =  ( { C }  u.  { D } )
107, 8, 93eqtr4g 2228 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  ( { <. A ,  C >. }  u.  {
<. B ,  D >. } )  =  { C ,  D } )
112, 10eqtrid 2215 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    u. cun 3119   {csn 3583   {cpr 3584   <.cop 3586   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator