ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnpropg GIF version

Theorem rnpropg 5149
Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Assertion
Ref Expression
rnpropg ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})

Proof of Theorem rnpropg
StepHypRef Expression
1 df-pr 3629 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21rneqi 4894 . 2 ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
3 rnsnopg 5148 . . . . 5 (𝐴𝑉 → ran {⟨𝐴, 𝐶⟩} = {𝐶})
43adantr 276 . . . 4 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩} = {𝐶})
5 rnsnopg 5148 . . . . 5 (𝐵𝑊 → ran {⟨𝐵, 𝐷⟩} = {𝐷})
65adantl 277 . . . 4 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐵, 𝐷⟩} = {𝐷})
74, 6uneq12d 3318 . . 3 ((𝐴𝑉𝐵𝑊) → (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩}) = ({𝐶} ∪ {𝐷}))
8 rnun 5078 . . 3 ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = (ran {⟨𝐴, 𝐶⟩} ∪ ran {⟨𝐵, 𝐷⟩})
9 df-pr 3629 . . 3 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
107, 8, 93eqtr4g 2254 . 2 ((𝐴𝑉𝐵𝑊) → ran ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩}) = {𝐶, 𝐷})
112, 10eqtrid 2241 1 ((𝐴𝑉𝐵𝑊) → ran {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cun 3155  {csn 3622  {cpr 3623  cop 3625  ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator