| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnpropg | GIF version | ||
| Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| rnpropg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3641 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 2 | 1 | rneqi 4911 | . 2 ⊢ ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) |
| 3 | rnsnopg 5166 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐶〉} = {𝐶}) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉} = {𝐶}) |
| 5 | rnsnopg 5166 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ran {〈𝐵, 𝐷〉} = {𝐷}) | |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐵, 𝐷〉} = {𝐷}) |
| 7 | 4, 6 | uneq12d 3329 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) = ({𝐶} ∪ {𝐷})) |
| 8 | rnun 5096 | . . 3 ⊢ ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = (ran {〈𝐴, 𝐶〉} ∪ ran {〈𝐵, 𝐷〉}) | |
| 9 | df-pr 3641 | . . 3 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
| 10 | 7, 8, 9 | 3eqtr4g 2264 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = {𝐶, 𝐷}) |
| 11 | 2, 10 | eqtrid 2251 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∪ cun 3165 {csn 3634 {cpr 3635 〈cop 3637 ran crn 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-dm 4689 df-rn 4690 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |