ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpge0 Unicode version

Theorem rpge0 9735
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
rpge0  |-  ( A  e.  RR+  ->  0  <_  A )

Proof of Theorem rpge0
StepHypRef Expression
1 rpre 9729 . 2  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpgt0 9734 . 2  |-  ( A  e.  RR+  ->  0  < 
A )
3 0re 8021 . . 3  |-  0  e.  RR
4 ltle 8109 . . 3  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
53, 4mpan 424 . 2  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
61, 2, 5sylc 62 1  |-  ( A  e.  RR+  ->  0  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   class class class wbr 4030   RRcr 7873   0cc0 7874    < clt 8056    <_ cle 8057   RR+crp 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-rp 9723
This theorem is referenced by:  rprege0  9737  rpge0d  9769  rpsqrtcl  11188  ef01bndlem  11902  bdmet  14681  rpcxpsqrt  15097  rpcxpsqrtth  15105
  Copyright terms: Public domain W3C validator