ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpge0 Unicode version

Theorem rpge0 9698
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
rpge0  |-  ( A  e.  RR+  ->  0  <_  A )

Proof of Theorem rpge0
StepHypRef Expression
1 rpre 9692 . 2  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpgt0 9697 . 2  |-  ( A  e.  RR+  ->  0  < 
A )
3 0re 7988 . . 3  |-  0  e.  RR
4 ltle 8076 . . 3  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
53, 4mpan 424 . 2  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
61, 2, 5sylc 62 1  |-  ( A  e.  RR+  ->  0  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   class class class wbr 4018   RRcr 7841   0cc0 7842    < clt 8023    <_ cle 8024   RR+crp 9685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-lttrn 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-cnv 4652  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-rp 9686
This theorem is referenced by:  rprege0  9700  rpge0d  9732  rpsqrtcl  11085  ef01bndlem  11799  bdmet  14479  rpcxpsqrt  14819  rpcxpsqrtth  14827
  Copyright terms: Public domain W3C validator