ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rprege0 Unicode version

Theorem rprege0 9668
Description: A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
rprege0  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )

Proof of Theorem rprege0
StepHypRef Expression
1 rpre 9660 . 2  |-  ( A  e.  RR+  ->  A  e.  RR )
2 rpge0 9666 . 2  |-  ( A  e.  RR+  ->  0  <_  A )
31, 2jca 306 1  |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   class class class wbr 4004   RRcr 7810   0cc0 7811    <_ cle 7993   RR+crp 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-lttrn 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-rp 9654
This theorem is referenced by:  sqrtdiv  11051
  Copyright terms: Public domain W3C validator