ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnledivrp Unicode version

Theorem nnledivrp 9962
Description: Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
nnledivrp  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( 1  <_  B  <->  ( A  /  B )  <_  A ) )

Proof of Theorem nnledivrp
StepHypRef Expression
1 1re 8145 . . . 4  |-  1  e.  RR
2 0lt1 8273 . . . 4  |-  0  <  1
31, 2pm3.2i 272 . . 3  |-  ( 1  e.  RR  /\  0  <  1 )
4 rpregt0 9863 . . . 4  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <  B ) )
54adantl 277 . . 3  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( B  e.  RR  /\  0  <  B ) )
6 nnre 9117 . . . . 5  |-  ( A  e.  NN  ->  A  e.  RR )
7 nngt0 9135 . . . . 5  |-  ( A  e.  NN  ->  0  <  A )
86, 7jca 306 . . . 4  |-  ( A  e.  NN  ->  ( A  e.  RR  /\  0  <  A ) )
98adantr 276 . . 3  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( A  e.  RR  /\  0  <  A ) )
10 lediv2 9038 . . 3  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <_  B  <->  ( A  /  B )  <_  ( A  / 
1 ) ) )
113, 5, 9, 10mp3an2i 1376 . 2  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( 1  <_  B  <->  ( A  /  B )  <_  ( A  / 
1 ) ) )
12 nncn 9118 . . . . 5  |-  ( A  e.  NN  ->  A  e.  CC )
1312div1d 8927 . . . 4  |-  ( A  e.  NN  ->  ( A  /  1 )  =  A )
1413adantr 276 . . 3  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( A  /  1
)  =  A )
1514breq2d 4095 . 2  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( ( A  /  B )  <_  ( A  /  1 )  <->  ( A  /  B )  <_  A
) )
1611, 15bitrd 188 1  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( 1  <_  B  <->  ( A  /  B )  <_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000    < clt 8181    <_ cle 8182    / cdiv 8819   NNcn 9110   RR+crp 9849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-rp 9850
This theorem is referenced by:  nn0ledivnn  9963
  Copyright terms: Public domain W3C validator