ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgmex Unicode version

Theorem rrgmex 13793
Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
Hypothesis
Ref Expression
rrgmex.e  |-  E  =  (RLReg `  R )
Assertion
Ref Expression
rrgmex  |-  ( A  e.  E  ->  R  e.  _V )

Proof of Theorem rrgmex
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4794 . . . 4  |-  Rel  (
r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
2 df-rlreg 13790 . . . . 5  |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
32releqi 4746 . . . 4  |-  ( Rel RLReg  <->  Rel  ( r  e.  _V  |->  { x  e.  ( Base `  r )  | 
A. y  e.  (
Base `  r )
( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } ) )
41, 3mpbir 146 . . 3  |-  Rel RLReg
5 rrgmex.e . . . . 5  |-  E  =  (RLReg `  R )
65eleq2i 2263 . . . 4  |-  ( A  e.  E  <->  A  e.  (RLReg `  R ) )
76biimpi 120 . . 3  |-  ( A  e.  E  ->  A  e.  (RLReg `  R )
)
8 relelfvdm 5590 . . 3  |-  ( ( Rel RLReg  /\  A  e.  (RLReg `  R ) )  ->  R  e.  dom RLReg )
94, 7, 8sylancr 414 . 2  |-  ( A  e.  E  ->  R  e.  dom RLReg )
109elexd 2776 1  |-  ( A  e.  E  ->  R  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763    |-> cmpt 4094   dom cdm 4663   Rel wrel 4668   ` cfv 5258  (class class class)co 5922   Basecbs 12654   .rcmulr 12732   0gc0g 12903  RLRegcrlreg 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-xp 4669  df-rel 4670  df-dm 4673  df-iota 5219  df-fv 5266  df-rlreg 13790
This theorem is referenced by:  rrgval  13794
  Copyright terms: Public domain W3C validator