ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgmex Unicode version

Theorem rrgmex 14073
Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
Hypothesis
Ref Expression
rrgmex.e  |-  E  =  (RLReg `  R )
Assertion
Ref Expression
rrgmex  |-  ( A  e.  E  ->  R  e.  _V )

Proof of Theorem rrgmex
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4811 . . . 4  |-  Rel  (
r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
2 df-rlreg 14070 . . . . 5  |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
32releqi 4763 . . . 4  |-  ( Rel RLReg  <->  Rel  ( r  e.  _V  |->  { x  e.  ( Base `  r )  | 
A. y  e.  (
Base `  r )
( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } ) )
41, 3mpbir 146 . . 3  |-  Rel RLReg
5 rrgmex.e . . . . 5  |-  E  =  (RLReg `  R )
65eleq2i 2273 . . . 4  |-  ( A  e.  E  <->  A  e.  (RLReg `  R ) )
76biimpi 120 . . 3  |-  ( A  e.  E  ->  A  e.  (RLReg `  R )
)
8 relelfvdm 5618 . . 3  |-  ( ( Rel RLReg  /\  A  e.  (RLReg `  R ) )  ->  R  e.  dom RLReg )
94, 7, 8sylancr 414 . 2  |-  ( A  e.  E  ->  R  e.  dom RLReg )
109elexd 2787 1  |-  ( A  e.  E  ->  R  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   A.wral 2485   {crab 2489   _Vcvv 2773    |-> cmpt 4110   dom cdm 4680   Rel wrel 4685   ` cfv 5277  (class class class)co 5954   Basecbs 12882   .rcmulr 12960   0gc0g 13138  RLRegcrlreg 14067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-xp 4686  df-rel 4687  df-dm 4690  df-iota 5238  df-fv 5285  df-rlreg 14070
This theorem is referenced by:  rrgval  14074
  Copyright terms: Public domain W3C validator