ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgmex Unicode version

Theorem rrgmex 14210
Description: A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
Hypothesis
Ref Expression
rrgmex.e  |-  E  =  (RLReg `  R )
Assertion
Ref Expression
rrgmex  |-  ( A  e.  E  ->  R  e.  _V )

Proof of Theorem rrgmex
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4847 . . . 4  |-  Rel  (
r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
2 df-rlreg 14207 . . . . 5  |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
32releqi 4799 . . . 4  |-  ( Rel RLReg  <->  Rel  ( r  e.  _V  |->  { x  e.  ( Base `  r )  | 
A. y  e.  (
Base `  r )
( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } ) )
41, 3mpbir 146 . . 3  |-  Rel RLReg
5 rrgmex.e . . . . 5  |-  E  =  (RLReg `  R )
65eleq2i 2296 . . . 4  |-  ( A  e.  E  <->  A  e.  (RLReg `  R ) )
76biimpi 120 . . 3  |-  ( A  e.  E  ->  A  e.  (RLReg `  R )
)
8 relelfvdm 5655 . . 3  |-  ( ( Rel RLReg  /\  A  e.  (RLReg `  R ) )  ->  R  e.  dom RLReg )
94, 7, 8sylancr 414 . 2  |-  ( A  e.  E  ->  R  e.  dom RLReg )
109elexd 2813 1  |-  ( A  e.  E  ->  R  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799    |-> cmpt 4144   dom cdm 4716   Rel wrel 4721   ` cfv 5314  (class class class)co 5994   Basecbs 13018   .rcmulr 13097   0gc0g 13275  RLRegcrlreg 14204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-xp 4722  df-rel 4723  df-dm 4726  df-iota 5274  df-fv 5322  df-rlreg 14207
This theorem is referenced by:  rrgval  14211
  Copyright terms: Public domain W3C validator