| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rrgval | Unicode version | ||
| Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgval.e |
|
| rrgval.b |
|
| rrgval.t |
|
| rrgval.z |
|
| Ref | Expression |
|---|---|
| rrgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e |
. . . 4
| |
| 2 | 1 | rrgmex 13827 |
. . 3
|
| 3 | elrabi 2917 |
. . . 4
| |
| 4 | rrgval.b |
. . . . 5
| |
| 5 | 4 | basmex 12747 |
. . . 4
|
| 6 | 3, 5 | syl 14 |
. . 3
|
| 7 | df-rlreg 13824 |
. . . . . 6
| |
| 8 | fveq2 5559 |
. . . . . . . 8
| |
| 9 | 8, 4 | eqtr4di 2247 |
. . . . . . 7
|
| 10 | fveq2 5559 |
. . . . . . . . . . . 12
| |
| 11 | rrgval.t |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | eqtr4di 2247 |
. . . . . . . . . . 11
|
| 13 | 12 | oveqd 5940 |
. . . . . . . . . 10
|
| 14 | fveq2 5559 |
. . . . . . . . . . 11
| |
| 15 | rrgval.z |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | eqtr4di 2247 |
. . . . . . . . . 10
|
| 17 | 13, 16 | eqeq12d 2211 |
. . . . . . . . 9
|
| 18 | 16 | eqeq2d 2208 |
. . . . . . . . 9
|
| 19 | 17, 18 | imbi12d 234 |
. . . . . . . 8
|
| 20 | 9, 19 | raleqbidv 2709 |
. . . . . . 7
|
| 21 | 9, 20 | rabeqbidv 2758 |
. . . . . 6
|
| 22 | id 19 |
. . . . . 6
| |
| 23 | basfn 12746 |
. . . . . . . . 9
| |
| 24 | funfvex 5576 |
. . . . . . . . . 10
| |
| 25 | 24 | funfni 5359 |
. . . . . . . . 9
|
| 26 | 23, 25 | mpan 424 |
. . . . . . . 8
|
| 27 | 4, 26 | eqeltrid 2283 |
. . . . . . 7
|
| 28 | rabexg 4177 |
. . . . . . 7
| |
| 29 | 27, 28 | syl 14 |
. . . . . 6
|
| 30 | 7, 21, 22, 29 | fvmptd3 5656 |
. . . . 5
|
| 31 | 1, 30 | eqtrid 2241 |
. . . 4
|
| 32 | 31 | eleq2d 2266 |
. . 3
|
| 33 | 2, 6, 32 | pm5.21nii 705 |
. 2
|
| 34 | 33 | eqriv 2193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5926 df-inn 8993 df-ndx 12691 df-slot 12692 df-base 12694 df-rlreg 13824 |
| This theorem is referenced by: isrrg 13829 rrgeq0 13831 rrgss 13832 |
| Copyright terms: Public domain | W3C validator |