ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgval Unicode version

Theorem rrgval 14211
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e  |-  E  =  (RLReg `  R )
rrgval.b  |-  B  =  ( Base `  R
)
rrgval.t  |-  .x.  =  ( .r `  R )
rrgval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rrgval  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
Distinct variable groups:    x, B, y   
x, R, y
Allowed substitution hints:    .x. ( x, y)    E( x, y)    .0. ( x, y)

Proof of Theorem rrgval
Dummy variables  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4  |-  E  =  (RLReg `  R )
21rrgmex 14210 . . 3  |-  ( z  e.  E  ->  R  e.  _V )
3 elrabi 2956 . . . 4  |-  ( z  e.  { x  e.  B  |  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  y  =  .0.  ) }  ->  z  e.  B )
4 rrgval.b . . . . 5  |-  B  =  ( Base `  R
)
54basmex 13078 . . . 4  |-  ( z  e.  B  ->  R  e.  _V )
63, 5syl 14 . . 3  |-  ( z  e.  { x  e.  B  |  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  y  =  .0.  ) }  ->  R  e.  _V )
7 df-rlreg 14207 . . . . . 6  |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
8 fveq2 5623 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
98, 4eqtr4di 2280 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
10 fveq2 5623 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
11 rrgval.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
1210, 11eqtr4di 2280 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1312oveqd 6011 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( .r `  r ) y )  =  ( x  .x.  y ) )
14 fveq2 5623 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
15 rrgval.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  R )
1614, 15eqtr4di 2280 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
1713, 16eqeq12d 2244 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x ( .r
`  r ) y )  =  ( 0g
`  r )  <->  ( x  .x.  y )  =  .0.  ) )
1816eqeq2d 2241 . . . . . . . . 9  |-  ( r  =  R  ->  (
y  =  ( 0g
`  r )  <->  y  =  .0.  ) )
1917, 18imbi12d 234 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) )  <->  ( ( x 
.x.  y )  =  .0.  ->  y  =  .0.  ) ) )
209, 19raleqbidv 2744 . . . . . . 7  |-  ( r  =  R  ->  ( A. y  e.  ( Base `  r ) ( ( x ( .r
`  r ) y )  =  ( 0g
`  r )  -> 
y  =  ( 0g
`  r ) )  <->  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) ) )
219, 20rabeqbidv 2794 . . . . . 6  |-  ( r  =  R  ->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) }  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
22 id 19 . . . . . 6  |-  ( R  e.  _V  ->  R  e.  _V )
23 basfn 13077 . . . . . . . . 9  |-  Base  Fn  _V
24 funfvex 5640 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2524funfni 5419 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2623, 25mpan 424 . . . . . . . 8  |-  ( R  e.  _V  ->  ( Base `  R )  e. 
_V )
274, 26eqeltrid 2316 . . . . . . 7  |-  ( R  e.  _V  ->  B  e.  _V )
28 rabexg 4226 . . . . . . 7  |-  ( B  e.  _V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  y  =  .0.  ) }  e.  _V )
2927, 28syl 14 . . . . . 6  |-  ( R  e.  _V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  y  =  .0.  ) }  e.  _V )
307, 21, 22, 29fvmptd3 5721 . . . . 5  |-  ( R  e.  _V  ->  (RLReg `  R )  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
311, 30eqtrid 2274 . . . 4  |-  ( R  e.  _V  ->  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
3231eleq2d 2299 . . 3  |-  ( R  e.  _V  ->  (
z  e.  E  <->  z  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } ) )
332, 6, 32pm5.21nii 709 . 2  |-  ( z  e.  E  <->  z  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
3433eqriv 2226 1  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799    Fn wfn 5309   ` cfv 5314  (class class class)co 5994   Basecbs 13018   .rcmulr 13097   0gc0g 13275  RLRegcrlreg 14204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024  df-rlreg 14207
This theorem is referenced by:  isrrg  14212  rrgeq0  14214  rrgss  14215
  Copyright terms: Public domain W3C validator