ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgval Unicode version

Theorem rrgval 13742
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e  |-  E  =  (RLReg `  R )
rrgval.b  |-  B  =  ( Base `  R
)
rrgval.t  |-  .x.  =  ( .r `  R )
rrgval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rrgval  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
Distinct variable groups:    x, B, y   
x, R, y
Allowed substitution hints:    .x. ( x, y)    E( x, y)    .0. ( x, y)

Proof of Theorem rrgval
Dummy variables  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4  |-  E  =  (RLReg `  R )
21rrgmex 13741 . . 3  |-  ( z  e.  E  ->  R  e.  _V )
3 elrabi 2913 . . . 4  |-  ( z  e.  { x  e.  B  |  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  y  =  .0.  ) }  ->  z  e.  B )
4 rrgval.b . . . . 5  |-  B  =  ( Base `  R
)
54basmex 12667 . . . 4  |-  ( z  e.  B  ->  R  e.  _V )
63, 5syl 14 . . 3  |-  ( z  e.  { x  e.  B  |  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  y  =  .0.  ) }  ->  R  e.  _V )
7 df-rlreg 13738 . . . . . 6  |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
8 fveq2 5546 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
98, 4eqtr4di 2244 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
10 fveq2 5546 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
11 rrgval.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
1210, 11eqtr4di 2244 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1312oveqd 5927 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( .r `  r ) y )  =  ( x  .x.  y ) )
14 fveq2 5546 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
15 rrgval.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  R )
1614, 15eqtr4di 2244 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
1713, 16eqeq12d 2208 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x ( .r
`  r ) y )  =  ( 0g
`  r )  <->  ( x  .x.  y )  =  .0.  ) )
1816eqeq2d 2205 . . . . . . . . 9  |-  ( r  =  R  ->  (
y  =  ( 0g
`  r )  <->  y  =  .0.  ) )
1917, 18imbi12d 234 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) )  <->  ( ( x 
.x.  y )  =  .0.  ->  y  =  .0.  ) ) )
209, 19raleqbidv 2706 . . . . . . 7  |-  ( r  =  R  ->  ( A. y  e.  ( Base `  r ) ( ( x ( .r
`  r ) y )  =  ( 0g
`  r )  -> 
y  =  ( 0g
`  r ) )  <->  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) ) )
219, 20rabeqbidv 2755 . . . . . 6  |-  ( r  =  R  ->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) }  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
22 id 19 . . . . . 6  |-  ( R  e.  _V  ->  R  e.  _V )
23 basfn 12666 . . . . . . . . 9  |-  Base  Fn  _V
24 funfvex 5563 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2524funfni 5346 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2623, 25mpan 424 . . . . . . . 8  |-  ( R  e.  _V  ->  ( Base `  R )  e. 
_V )
274, 26eqeltrid 2280 . . . . . . 7  |-  ( R  e.  _V  ->  B  e.  _V )
28 rabexg 4172 . . . . . . 7  |-  ( B  e.  _V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  y  =  .0.  ) }  e.  _V )
2927, 28syl 14 . . . . . 6  |-  ( R  e.  _V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  y  =  .0.  ) }  e.  _V )
307, 21, 22, 29fvmptd3 5643 . . . . 5  |-  ( R  e.  _V  ->  (RLReg `  R )  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
311, 30eqtrid 2238 . . . 4  |-  ( R  e.  _V  ->  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
3231eleq2d 2263 . . 3  |-  ( R  e.  _V  ->  (
z  e.  E  <->  z  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } ) )
332, 6, 32pm5.21nii 705 . 2  |-  ( z  e.  E  <->  z  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
3433eqriv 2190 1  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760    Fn wfn 5241   ` cfv 5246  (class class class)co 5910   Basecbs 12608   .rcmulr 12686   0gc0g 12857  RLRegcrlreg 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-cnex 7953  ax-resscn 7954  ax-1re 7956  ax-addrcl 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-iota 5207  df-fun 5248  df-fn 5249  df-fv 5254  df-ov 5913  df-inn 8973  df-ndx 12611  df-slot 12612  df-base 12614  df-rlreg 13738
This theorem is referenced by:  isrrg  13743  rrgeq0  13745  rrgss  13746
  Copyright terms: Public domain W3C validator