ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgval Unicode version

Theorem rrgval 13794
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e  |-  E  =  (RLReg `  R )
rrgval.b  |-  B  =  ( Base `  R
)
rrgval.t  |-  .x.  =  ( .r `  R )
rrgval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rrgval  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
Distinct variable groups:    x, B, y   
x, R, y
Allowed substitution hints:    .x. ( x, y)    E( x, y)    .0. ( x, y)

Proof of Theorem rrgval
Dummy variables  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4  |-  E  =  (RLReg `  R )
21rrgmex 13793 . . 3  |-  ( z  e.  E  ->  R  e.  _V )
3 elrabi 2917 . . . 4  |-  ( z  e.  { x  e.  B  |  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  y  =  .0.  ) }  ->  z  e.  B )
4 rrgval.b . . . . 5  |-  B  =  ( Base `  R
)
54basmex 12713 . . . 4  |-  ( z  e.  B  ->  R  e.  _V )
63, 5syl 14 . . 3  |-  ( z  e.  { x  e.  B  |  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  y  =  .0.  ) }  ->  R  e.  _V )
7 df-rlreg 13790 . . . . . 6  |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
8 fveq2 5558 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
98, 4eqtr4di 2247 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
10 fveq2 5558 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
11 rrgval.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
1210, 11eqtr4di 2247 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1312oveqd 5939 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( .r `  r ) y )  =  ( x  .x.  y ) )
14 fveq2 5558 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
15 rrgval.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  R )
1614, 15eqtr4di 2247 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
1713, 16eqeq12d 2211 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x ( .r
`  r ) y )  =  ( 0g
`  r )  <->  ( x  .x.  y )  =  .0.  ) )
1816eqeq2d 2208 . . . . . . . . 9  |-  ( r  =  R  ->  (
y  =  ( 0g
`  r )  <->  y  =  .0.  ) )
1917, 18imbi12d 234 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) )  <->  ( ( x 
.x.  y )  =  .0.  ->  y  =  .0.  ) ) )
209, 19raleqbidv 2709 . . . . . . 7  |-  ( r  =  R  ->  ( A. y  e.  ( Base `  r ) ( ( x ( .r
`  r ) y )  =  ( 0g
`  r )  -> 
y  =  ( 0g
`  r ) )  <->  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) ) )
219, 20rabeqbidv 2758 . . . . . 6  |-  ( r  =  R  ->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) }  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
22 id 19 . . . . . 6  |-  ( R  e.  _V  ->  R  e.  _V )
23 basfn 12712 . . . . . . . . 9  |-  Base  Fn  _V
24 funfvex 5575 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2524funfni 5358 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2623, 25mpan 424 . . . . . . . 8  |-  ( R  e.  _V  ->  ( Base `  R )  e. 
_V )
274, 26eqeltrid 2283 . . . . . . 7  |-  ( R  e.  _V  ->  B  e.  _V )
28 rabexg 4176 . . . . . . 7  |-  ( B  e.  _V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  y  =  .0.  ) }  e.  _V )
2927, 28syl 14 . . . . . 6  |-  ( R  e.  _V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  y  =  .0.  ) }  e.  _V )
307, 21, 22, 29fvmptd3 5655 . . . . 5  |-  ( R  e.  _V  ->  (RLReg `  R )  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
311, 30eqtrid 2241 . . . 4  |-  ( R  e.  _V  ->  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
3231eleq2d 2266 . . 3  |-  ( R  e.  _V  ->  (
z  e.  E  <->  z  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } ) )
332, 6, 32pm5.21nii 705 . 2  |-  ( z  e.  E  <->  z  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
3433eqriv 2193 1  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12654   .rcmulr 12732   0gc0g 12903  RLRegcrlreg 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7968  ax-resscn 7969  ax-1re 7971  ax-addrcl 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8988  df-ndx 12657  df-slot 12658  df-base 12660  df-rlreg 13790
This theorem is referenced by:  isrrg  13795  rrgeq0  13797  rrgss  13798
  Copyright terms: Public domain W3C validator