| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rrgval | Unicode version | ||
| Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgval.e |
|
| rrgval.b |
|
| rrgval.t |
|
| rrgval.z |
|
| Ref | Expression |
|---|---|
| rrgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e |
. . . 4
| |
| 2 | 1 | rrgmex 14093 |
. . 3
|
| 3 | elrabi 2930 |
. . . 4
| |
| 4 | rrgval.b |
. . . . 5
| |
| 5 | 4 | basmex 12961 |
. . . 4
|
| 6 | 3, 5 | syl 14 |
. . 3
|
| 7 | df-rlreg 14090 |
. . . . . 6
| |
| 8 | fveq2 5588 |
. . . . . . . 8
| |
| 9 | 8, 4 | eqtr4di 2257 |
. . . . . . 7
|
| 10 | fveq2 5588 |
. . . . . . . . . . . 12
| |
| 11 | rrgval.t |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | eqtr4di 2257 |
. . . . . . . . . . 11
|
| 13 | 12 | oveqd 5973 |
. . . . . . . . . 10
|
| 14 | fveq2 5588 |
. . . . . . . . . . 11
| |
| 15 | rrgval.z |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | eqtr4di 2257 |
. . . . . . . . . 10
|
| 17 | 13, 16 | eqeq12d 2221 |
. . . . . . . . 9
|
| 18 | 16 | eqeq2d 2218 |
. . . . . . . . 9
|
| 19 | 17, 18 | imbi12d 234 |
. . . . . . . 8
|
| 20 | 9, 19 | raleqbidv 2719 |
. . . . . . 7
|
| 21 | 9, 20 | rabeqbidv 2768 |
. . . . . 6
|
| 22 | id 19 |
. . . . . 6
| |
| 23 | basfn 12960 |
. . . . . . . . 9
| |
| 24 | funfvex 5605 |
. . . . . . . . . 10
| |
| 25 | 24 | funfni 5384 |
. . . . . . . . 9
|
| 26 | 23, 25 | mpan 424 |
. . . . . . . 8
|
| 27 | 4, 26 | eqeltrid 2293 |
. . . . . . 7
|
| 28 | rabexg 4194 |
. . . . . . 7
| |
| 29 | 27, 28 | syl 14 |
. . . . . 6
|
| 30 | 7, 21, 22, 29 | fvmptd3 5685 |
. . . . 5
|
| 31 | 1, 30 | eqtrid 2251 |
. . . 4
|
| 32 | 31 | eleq2d 2276 |
. . 3
|
| 33 | 2, 6, 32 | pm5.21nii 706 |
. 2
|
| 34 | 33 | eqriv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-cnex 8031 ax-resscn 8032 ax-1re 8034 ax-addrcl 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-iota 5240 df-fun 5281 df-fn 5282 df-fv 5287 df-ov 5959 df-inn 9052 df-ndx 12905 df-slot 12906 df-base 12908 df-rlreg 14090 |
| This theorem is referenced by: isrrg 14095 rrgeq0 14097 rrgss 14098 |
| Copyright terms: Public domain | W3C validator |