ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgval Unicode version

Theorem rrgval 14094
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e  |-  E  =  (RLReg `  R )
rrgval.b  |-  B  =  ( Base `  R
)
rrgval.t  |-  .x.  =  ( .r `  R )
rrgval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rrgval  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
Distinct variable groups:    x, B, y   
x, R, y
Allowed substitution hints:    .x. ( x, y)    E( x, y)    .0. ( x, y)

Proof of Theorem rrgval
Dummy variables  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4  |-  E  =  (RLReg `  R )
21rrgmex 14093 . . 3  |-  ( z  e.  E  ->  R  e.  _V )
3 elrabi 2930 . . . 4  |-  ( z  e.  { x  e.  B  |  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  y  =  .0.  ) }  ->  z  e.  B )
4 rrgval.b . . . . 5  |-  B  =  ( Base `  R
)
54basmex 12961 . . . 4  |-  ( z  e.  B  ->  R  e.  _V )
63, 5syl 14 . . 3  |-  ( z  e.  { x  e.  B  |  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  y  =  .0.  ) }  ->  R  e.  _V )
7 df-rlreg 14090 . . . . . 6  |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) ) } )
8 fveq2 5588 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
98, 4eqtr4di 2257 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
10 fveq2 5588 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
11 rrgval.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
1210, 11eqtr4di 2257 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1312oveqd 5973 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( .r `  r ) y )  =  ( x  .x.  y ) )
14 fveq2 5588 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
15 rrgval.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  R )
1614, 15eqtr4di 2257 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
1713, 16eqeq12d 2221 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x ( .r
`  r ) y )  =  ( 0g
`  r )  <->  ( x  .x.  y )  =  .0.  ) )
1816eqeq2d 2218 . . . . . . . . 9  |-  ( r  =  R  ->  (
y  =  ( 0g
`  r )  <->  y  =  .0.  ) )
1917, 18imbi12d 234 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r ) )  <->  ( ( x 
.x.  y )  =  .0.  ->  y  =  .0.  ) ) )
209, 19raleqbidv 2719 . . . . . . 7  |-  ( r  =  R  ->  ( A. y  e.  ( Base `  r ) ( ( x ( .r
`  r ) y )  =  ( 0g
`  r )  -> 
y  =  ( 0g
`  r ) )  <->  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) ) )
219, 20rabeqbidv 2768 . . . . . 6  |-  ( r  =  R  ->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) }  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
22 id 19 . . . . . 6  |-  ( R  e.  _V  ->  R  e.  _V )
23 basfn 12960 . . . . . . . . 9  |-  Base  Fn  _V
24 funfvex 5605 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2524funfni 5384 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2623, 25mpan 424 . . . . . . . 8  |-  ( R  e.  _V  ->  ( Base `  R )  e. 
_V )
274, 26eqeltrid 2293 . . . . . . 7  |-  ( R  e.  _V  ->  B  e.  _V )
28 rabexg 4194 . . . . . . 7  |-  ( B  e.  _V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  y  =  .0.  ) }  e.  _V )
2927, 28syl 14 . . . . . 6  |-  ( R  e.  _V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  y  =  .0.  ) }  e.  _V )
307, 21, 22, 29fvmptd3 5685 . . . . 5  |-  ( R  e.  _V  ->  (RLReg `  R )  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
311, 30eqtrid 2251 . . . 4  |-  ( R  e.  _V  ->  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
3231eleq2d 2276 . . 3  |-  ( R  e.  _V  ->  (
z  e.  E  <->  z  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } ) )
332, 6, 32pm5.21nii 706 . 2  |-  ( z  e.  E  <->  z  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) } )
3433eqriv 2203 1  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   A.wral 2485   {crab 2489   _Vcvv 2773    Fn wfn 5274   ` cfv 5279  (class class class)co 5956   Basecbs 12902   .rcmulr 12980   0gc0g 13158  RLRegcrlreg 14087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-ov 5959  df-inn 9052  df-ndx 12905  df-slot 12906  df-base 12908  df-rlreg 14090
This theorem is referenced by:  isrrg  14095  rrgeq0  14097  rrgss  14098
  Copyright terms: Public domain W3C validator