| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rrgval | Unicode version | ||
| Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| rrgval.e |
|
| rrgval.b |
|
| rrgval.t |
|
| rrgval.z |
|
| Ref | Expression |
|---|---|
| rrgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e |
. . . 4
| |
| 2 | 1 | rrgmex 14210 |
. . 3
|
| 3 | elrabi 2956 |
. . . 4
| |
| 4 | rrgval.b |
. . . . 5
| |
| 5 | 4 | basmex 13078 |
. . . 4
|
| 6 | 3, 5 | syl 14 |
. . 3
|
| 7 | df-rlreg 14207 |
. . . . . 6
| |
| 8 | fveq2 5623 |
. . . . . . . 8
| |
| 9 | 8, 4 | eqtr4di 2280 |
. . . . . . 7
|
| 10 | fveq2 5623 |
. . . . . . . . . . . 12
| |
| 11 | rrgval.t |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | eqtr4di 2280 |
. . . . . . . . . . 11
|
| 13 | 12 | oveqd 6011 |
. . . . . . . . . 10
|
| 14 | fveq2 5623 |
. . . . . . . . . . 11
| |
| 15 | rrgval.z |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | eqtr4di 2280 |
. . . . . . . . . 10
|
| 17 | 13, 16 | eqeq12d 2244 |
. . . . . . . . 9
|
| 18 | 16 | eqeq2d 2241 |
. . . . . . . . 9
|
| 19 | 17, 18 | imbi12d 234 |
. . . . . . . 8
|
| 20 | 9, 19 | raleqbidv 2744 |
. . . . . . 7
|
| 21 | 9, 20 | rabeqbidv 2794 |
. . . . . 6
|
| 22 | id 19 |
. . . . . 6
| |
| 23 | basfn 13077 |
. . . . . . . . 9
| |
| 24 | funfvex 5640 |
. . . . . . . . . 10
| |
| 25 | 24 | funfni 5419 |
. . . . . . . . 9
|
| 26 | 23, 25 | mpan 424 |
. . . . . . . 8
|
| 27 | 4, 26 | eqeltrid 2316 |
. . . . . . 7
|
| 28 | rabexg 4226 |
. . . . . . 7
| |
| 29 | 27, 28 | syl 14 |
. . . . . 6
|
| 30 | 7, 21, 22, 29 | fvmptd3 5721 |
. . . . 5
|
| 31 | 1, 30 | eqtrid 2274 |
. . . 4
|
| 32 | 31 | eleq2d 2299 |
. . 3
|
| 33 | 2, 6, 32 | pm5.21nii 709 |
. 2
|
| 34 | 33 | eqriv 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-ov 5997 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-rlreg 14207 |
| This theorem is referenced by: isrrg 14212 rrgeq0 14214 rrgss 14215 |
| Copyright terms: Public domain | W3C validator |