ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpo Unicode version

Theorem elovmpo 6117
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
elovmpo.d  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
elovmpo.c  |-  C  e. 
_V
elovmpo.e  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
Assertion
Ref Expression
elovmpo  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Distinct variable groups:    A, a, b    B, a, b    E, a, b    F, a, b    X, a, b    Y, a, b
Allowed substitution hints:    C( a, b)    D( a, b)

Proof of Theorem elovmpo
StepHypRef Expression
1 elovmpo.d . . . 4  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
21elmpocl 6113 . . 3  |-  ( F  e.  ( X D Y )  ->  ( X  e.  A  /\  Y  e.  B )
)
3 elovmpo.c . . . . . . 7  |-  C  e. 
_V
43gen2 1461 . . . . . 6  |-  A. a A. b  C  e.  _V
5 elovmpo.e . . . . . . . 8  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
65eleq1d 2262 . . . . . . 7  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( C  e.  _V  <->  E  e.  _V ) )
76spc2gv 2851 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( A. a A. b  C  e.  _V  ->  E  e.  _V )
)
84, 7mpi 15 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  E  e.  _V )
95, 1ovmpoga 6048 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B  /\  E  e.  _V )  ->  ( X D Y )  =  E )
108, 9mpd3an3 1349 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X D Y )  =  E )
1110eleq2d 2263 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( F  e.  ( X D Y )  <-> 
F  e.  E ) )
122, 11biadan2 456 . 2  |-  ( F  e.  ( X D Y )  <->  ( ( X  e.  A  /\  Y  e.  B )  /\  F  e.  E
) )
13 df-3an 982 . 2  |-  ( ( X  e.  A  /\  Y  e.  B  /\  F  e.  E )  <->  ( ( X  e.  A  /\  Y  e.  B
)  /\  F  e.  E ) )
1412, 13bitr4i 187 1  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2164   _Vcvv 2760  (class class class)co 5918    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator