ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpo Unicode version

Theorem elovmpo 6039
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
elovmpo.d  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
elovmpo.c  |-  C  e. 
_V
elovmpo.e  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
Assertion
Ref Expression
elovmpo  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Distinct variable groups:    A, a, b    B, a, b    E, a, b    F, a, b    X, a, b    Y, a, b
Allowed substitution hints:    C( a, b)    D( a, b)

Proof of Theorem elovmpo
StepHypRef Expression
1 elovmpo.d . . . 4  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
21elmpocl 6036 . . 3  |-  ( F  e.  ( X D Y )  ->  ( X  e.  A  /\  Y  e.  B )
)
3 elovmpo.c . . . . . . 7  |-  C  e. 
_V
43gen2 1438 . . . . . 6  |-  A. a A. b  C  e.  _V
5 elovmpo.e . . . . . . . 8  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
65eleq1d 2235 . . . . . . 7  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( C  e.  _V  <->  E  e.  _V ) )
76spc2gv 2817 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( A. a A. b  C  e.  _V  ->  E  e.  _V )
)
84, 7mpi 15 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  E  e.  _V )
95, 1ovmpoga 5971 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B  /\  E  e.  _V )  ->  ( X D Y )  =  E )
108, 9mpd3an3 1328 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X D Y )  =  E )
1110eleq2d 2236 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( F  e.  ( X D Y )  <-> 
F  e.  E ) )
122, 11biadan2 452 . 2  |-  ( F  e.  ( X D Y )  <->  ( ( X  e.  A  /\  Y  e.  B )  /\  F  e.  E
) )
13 df-3an 970 . 2  |-  ( ( X  e.  A  /\  Y  e.  B  /\  F  e.  E )  <->  ( ( X  e.  A  /\  Y  e.  B
)  /\  F  e.  E ) )
1412, 13bitr4i 186 1  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968   A.wal 1341    = wceq 1343    e. wcel 2136   _Vcvv 2726  (class class class)co 5842    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator