ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpo Unicode version

Theorem elovmpo 6168
Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
elovmpo.d  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
elovmpo.c  |-  C  e. 
_V
elovmpo.e  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
Assertion
Ref Expression
elovmpo  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Distinct variable groups:    A, a, b    B, a, b    E, a, b    F, a, b    X, a, b    Y, a, b
Allowed substitution hints:    C( a, b)    D( a, b)

Proof of Theorem elovmpo
StepHypRef Expression
1 elovmpo.d . . . 4  |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )
21elmpocl 6164 . . 3  |-  ( F  e.  ( X D Y )  ->  ( X  e.  A  /\  Y  e.  B )
)
3 elovmpo.c . . . . . . 7  |-  C  e. 
_V
43gen2 1474 . . . . . 6  |-  A. a A. b  C  e.  _V
5 elovmpo.e . . . . . . . 8  |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )
65eleq1d 2276 . . . . . . 7  |-  ( ( a  =  X  /\  b  =  Y )  ->  ( C  e.  _V  <->  E  e.  _V ) )
76spc2gv 2871 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( A. a A. b  C  e.  _V  ->  E  e.  _V )
)
84, 7mpi 15 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  E  e.  _V )
95, 1ovmpoga 6098 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  B  /\  E  e.  _V )  ->  ( X D Y )  =  E )
108, 9mpd3an3 1351 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( X D Y )  =  E )
1110eleq2d 2277 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( F  e.  ( X D Y )  <-> 
F  e.  E ) )
122, 11biadan2 456 . 2  |-  ( F  e.  ( X D Y )  <->  ( ( X  e.  A  /\  Y  e.  B )  /\  F  e.  E
) )
13 df-3an 983 . 2  |-  ( ( X  e.  A  /\  Y  e.  B  /\  F  e.  E )  <->  ( ( X  e.  A  /\  Y  e.  B
)  /\  F  e.  E ) )
1412, 13bitr4i 187 1  |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   A.wal 1371    = wceq 1373    e. wcel 2178   _Vcvv 2776  (class class class)co 5967    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator