ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetunirn Unicode version

Theorem xmetunirn 14863
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )

Proof of Theorem xmetunirn
Dummy variables  x  y  z  d  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6744 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
2 xrex 9980 . . . . . . 7  |-  RR*  e.  _V
3 sqxpexg 4792 . . . . . . . 8  |-  ( x  e.  _V  ->  (
x  X.  x )  e.  _V )
43elv 2776 . . . . . . 7  |-  ( x  X.  x )  e. 
_V
5 fnovex 5979 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  RR*  e.  _V  /\  ( x  X.  x )  e. 
_V )  ->  ( RR*  ^m  ( x  X.  x ) )  e. 
_V )
61, 2, 4, 5mp3an 1350 . . . . . 6  |-  ( RR*  ^m  ( x  X.  x
) )  e.  _V
76rabex 4189 . . . . 5  |-  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( (
( y d z )  =  0  <->  y  =  z )  /\  A. w  e.  x  ( y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) }  e.  _V
8 df-xmet 14339 . . . . 5  |-  *Met  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( (
( y d z )  =  0  <->  y  =  z )  /\  A. w  e.  x  ( y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
97, 8fnmpti 5406 . . . 4  |-  *Met  Fn  _V
10 fnunirn 5838 . . . 4  |-  ( *Met  Fn  _V  ->  ( D  e.  U. ran  *Met  <->  E. x  e.  _V  D  e.  ( *Met `  x ) ) )
119, 10ax-mp 5 . . 3  |-  ( D  e.  U. ran  *Met 
<->  E. x  e.  _V  D  e.  ( *Met `  x ) )
12 id 19 . . . . 5  |-  ( D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  x ) )
13 xmetdmdm 14861 . . . . . 6  |-  ( D  e.  ( *Met `  x )  ->  x  =  dom  dom  D )
1413fveq2d 5582 . . . . 5  |-  ( D  e.  ( *Met `  x )  ->  ( *Met `  x )  =  ( *Met ` 
dom  dom  D ) )
1512, 14eleqtrd 2284 . . . 4  |-  ( D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  dom  dom  D ) )
1615rexlimivw 2619 . . 3  |-  ( E. x  e.  _V  D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  dom  dom  D ) )
1711, 16sylbi 121 . 2  |-  ( D  e.  U. ran  *Met  ->  D  e.  ( *Met `  dom  dom 
D ) )
18 elex 2783 . . . . . 6  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  D  e.  _V )
19 dmexg 4943 . . . . . 6  |-  ( D  e.  _V  ->  dom  D  e.  _V )
20 dmexg 4943 . . . . . 6  |-  ( dom 
D  e.  _V  ->  dom 
dom  D  e.  _V )
2118, 19, 203syl 17 . . . . 5  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  dom  dom  D  e.  _V )
22 fvssunirng 5593 . . . . 5  |-  ( dom 
dom  D  e.  _V  ->  ( *Met `  dom  dom  D )  C_  U.
ran  *Met )
2321, 22syl 14 . . . 4  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( *Met `  dom  dom  D )  C_  U.
ran  *Met )
2423sseld 3192 . . 3  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( D  e.  ( *Met `  dom  dom 
D )  ->  D  e.  U. ran  *Met ) )
2524pm2.43i 49 . 2  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  D  e.  U. ran  *Met )
2617, 25impbii 126 1  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488   _Vcvv 2772    C_ wss 3166   U.cuni 3850   class class class wbr 4045    X. cxp 4674   dom cdm 4676   ran crn 4677    Fn wfn 5267   ` cfv 5272  (class class class)co 5946    ^m cmap 6737   0cc0 7927   RR*cxr 8108    <_ cle 8110   +ecxad 9894   *Metcxmet 14331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-map 6739  df-pnf 8111  df-mnf 8112  df-xr 8113  df-xmet 14339
This theorem is referenced by:  isxms2  14957
  Copyright terms: Public domain W3C validator