| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetunirn | Unicode version | ||
| Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| xmetunirn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6723 |
. . . . . . 7
| |
| 2 | xrex 9948 |
. . . . . . 7
| |
| 3 | sqxpexg 4780 |
. . . . . . . 8
| |
| 4 | 3 | elv 2767 |
. . . . . . 7
|
| 5 | fnovex 5958 |
. . . . . . 7
| |
| 6 | 1, 2, 4, 5 | mp3an 1348 |
. . . . . 6
|
| 7 | 6 | rabex 4178 |
. . . . 5
|
| 8 | df-xmet 14176 |
. . . . 5
| |
| 9 | 7, 8 | fnmpti 5389 |
. . . 4
|
| 10 | fnunirn 5817 |
. . . 4
| |
| 11 | 9, 10 | ax-mp 5 |
. . 3
|
| 12 | id 19 |
. . . . 5
| |
| 13 | xmetdmdm 14676 |
. . . . . 6
| |
| 14 | 13 | fveq2d 5565 |
. . . . 5
|
| 15 | 12, 14 | eleqtrd 2275 |
. . . 4
|
| 16 | 15 | rexlimivw 2610 |
. . 3
|
| 17 | 11, 16 | sylbi 121 |
. 2
|
| 18 | elex 2774 |
. . . . . 6
| |
| 19 | dmexg 4931 |
. . . . . 6
| |
| 20 | dmexg 4931 |
. . . . . 6
| |
| 21 | 18, 19, 20 | 3syl 17 |
. . . . 5
|
| 22 | fvssunirng 5576 |
. . . . 5
| |
| 23 | 21, 22 | syl 14 |
. . . 4
|
| 24 | 23 | sseld 3183 |
. . 3
|
| 25 | 24 | pm2.43i 49 |
. 2
|
| 26 | 17, 25 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-pnf 8080 df-mnf 8081 df-xr 8082 df-xmet 14176 |
| This theorem is referenced by: isxms2 14772 |
| Copyright terms: Public domain | W3C validator |