ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetunirn Unicode version

Theorem xmetunirn 15032
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )

Proof of Theorem xmetunirn
Dummy variables  x  y  z  d  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6802 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
2 xrex 10052 . . . . . . 7  |-  RR*  e.  _V
3 sqxpexg 4835 . . . . . . . 8  |-  ( x  e.  _V  ->  (
x  X.  x )  e.  _V )
43elv 2803 . . . . . . 7  |-  ( x  X.  x )  e. 
_V
5 fnovex 6034 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  RR*  e.  _V  /\  ( x  X.  x )  e. 
_V )  ->  ( RR*  ^m  ( x  X.  x ) )  e. 
_V )
61, 2, 4, 5mp3an 1371 . . . . . 6  |-  ( RR*  ^m  ( x  X.  x
) )  e.  _V
76rabex 4228 . . . . 5  |-  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( (
( y d z )  =  0  <->  y  =  z )  /\  A. w  e.  x  ( y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) }  e.  _V
8 df-xmet 14508 . . . . 5  |-  *Met  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( (
( y d z )  =  0  <->  y  =  z )  /\  A. w  e.  x  ( y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
97, 8fnmpti 5452 . . . 4  |-  *Met  Fn  _V
10 fnunirn 5891 . . . 4  |-  ( *Met  Fn  _V  ->  ( D  e.  U. ran  *Met  <->  E. x  e.  _V  D  e.  ( *Met `  x ) ) )
119, 10ax-mp 5 . . 3  |-  ( D  e.  U. ran  *Met 
<->  E. x  e.  _V  D  e.  ( *Met `  x ) )
12 id 19 . . . . 5  |-  ( D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  x ) )
13 xmetdmdm 15030 . . . . . 6  |-  ( D  e.  ( *Met `  x )  ->  x  =  dom  dom  D )
1413fveq2d 5631 . . . . 5  |-  ( D  e.  ( *Met `  x )  ->  ( *Met `  x )  =  ( *Met ` 
dom  dom  D ) )
1512, 14eleqtrd 2308 . . . 4  |-  ( D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  dom  dom  D ) )
1615rexlimivw 2644 . . 3  |-  ( E. x  e.  _V  D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  dom  dom  D ) )
1711, 16sylbi 121 . 2  |-  ( D  e.  U. ran  *Met  ->  D  e.  ( *Met `  dom  dom 
D ) )
18 elex 2811 . . . . . 6  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  D  e.  _V )
19 dmexg 4988 . . . . . 6  |-  ( D  e.  _V  ->  dom  D  e.  _V )
20 dmexg 4988 . . . . . 6  |-  ( dom 
D  e.  _V  ->  dom 
dom  D  e.  _V )
2118, 19, 203syl 17 . . . . 5  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  dom  dom  D  e.  _V )
22 fvssunirng 5642 . . . . 5  |-  ( dom 
dom  D  e.  _V  ->  ( *Met `  dom  dom  D )  C_  U.
ran  *Met )
2321, 22syl 14 . . . 4  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( *Met `  dom  dom  D )  C_  U.
ran  *Met )
2423sseld 3223 . . 3  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( D  e.  ( *Met `  dom  dom 
D )  ->  D  e.  U. ran  *Met ) )
2524pm2.43i 49 . 2  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  D  e.  U. ran  *Met )
2617, 25impbii 126 1  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   _Vcvv 2799    C_ wss 3197   U.cuni 3888   class class class wbr 4083    X. cxp 4717   dom cdm 4719   ran crn 4720    Fn wfn 5313   ` cfv 5318  (class class class)co 6001    ^m cmap 6795   0cc0 7999   RR*cxr 8180    <_ cle 8182   +ecxad 9966   *Metcxmet 14500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-xmet 14508
This theorem is referenced by:  isxms2  15126
  Copyright terms: Public domain W3C validator