ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetunirn Unicode version

Theorem xmetunirn 14526
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )

Proof of Theorem xmetunirn
Dummy variables  x  y  z  d  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6709 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
2 xrex 9922 . . . . . . 7  |-  RR*  e.  _V
3 sqxpexg 4775 . . . . . . . 8  |-  ( x  e.  _V  ->  (
x  X.  x )  e.  _V )
43elv 2764 . . . . . . 7  |-  ( x  X.  x )  e. 
_V
5 fnovex 5951 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  RR*  e.  _V  /\  ( x  X.  x )  e. 
_V )  ->  ( RR*  ^m  ( x  X.  x ) )  e. 
_V )
61, 2, 4, 5mp3an 1348 . . . . . 6  |-  ( RR*  ^m  ( x  X.  x
) )  e.  _V
76rabex 4173 . . . . 5  |-  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( (
( y d z )  =  0  <->  y  =  z )  /\  A. w  e.  x  ( y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) }  e.  _V
8 df-xmet 14040 . . . . 5  |-  *Met  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( (
( y d z )  =  0  <->  y  =  z )  /\  A. w  e.  x  ( y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
97, 8fnmpti 5382 . . . 4  |-  *Met  Fn  _V
10 fnunirn 5810 . . . 4  |-  ( *Met  Fn  _V  ->  ( D  e.  U. ran  *Met  <->  E. x  e.  _V  D  e.  ( *Met `  x ) ) )
119, 10ax-mp 5 . . 3  |-  ( D  e.  U. ran  *Met 
<->  E. x  e.  _V  D  e.  ( *Met `  x ) )
12 id 19 . . . . 5  |-  ( D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  x ) )
13 xmetdmdm 14524 . . . . . 6  |-  ( D  e.  ( *Met `  x )  ->  x  =  dom  dom  D )
1413fveq2d 5558 . . . . 5  |-  ( D  e.  ( *Met `  x )  ->  ( *Met `  x )  =  ( *Met ` 
dom  dom  D ) )
1512, 14eleqtrd 2272 . . . 4  |-  ( D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  dom  dom  D ) )
1615rexlimivw 2607 . . 3  |-  ( E. x  e.  _V  D  e.  ( *Met `  x )  ->  D  e.  ( *Met `  dom  dom  D ) )
1711, 16sylbi 121 . 2  |-  ( D  e.  U. ran  *Met  ->  D  e.  ( *Met `  dom  dom 
D ) )
18 elex 2771 . . . . . 6  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  D  e.  _V )
19 dmexg 4926 . . . . . 6  |-  ( D  e.  _V  ->  dom  D  e.  _V )
20 dmexg 4926 . . . . . 6  |-  ( dom 
D  e.  _V  ->  dom 
dom  D  e.  _V )
2118, 19, 203syl 17 . . . . 5  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  dom  dom  D  e.  _V )
22 fvssunirng 5569 . . . . 5  |-  ( dom 
dom  D  e.  _V  ->  ( *Met `  dom  dom  D )  C_  U.
ran  *Met )
2321, 22syl 14 . . . 4  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( *Met `  dom  dom  D )  C_  U.
ran  *Met )
2423sseld 3178 . . 3  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( D  e.  ( *Met `  dom  dom 
D )  ->  D  e.  U. ran  *Met ) )
2524pm2.43i 49 . 2  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  D  e.  U. ran  *Met )
2617, 25impbii 126 1  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   _Vcvv 2760    C_ wss 3153   U.cuni 3835   class class class wbr 4029    X. cxp 4657   dom cdm 4659   ran crn 4660    Fn wfn 5249   ` cfv 5254  (class class class)co 5918    ^m cmap 6702   0cc0 7872   RR*cxr 8053    <_ cle 8055   +ecxad 9836   *Metcxmet 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-xmet 14040
This theorem is referenced by:  isxms2  14620
  Copyright terms: Public domain W3C validator