![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpex | Unicode version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpex.1 |
![]() ![]() ![]() ![]() |
xpex.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
xpex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | xpex.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | xpexg 4774 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 426 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-opab 4092 df-xp 4666 |
This theorem is referenced by: oprabex 6182 oprabex3 6183 mpoexw 6268 fnpm 6712 mapsnf1o2 6752 xpsnen 6877 endisj 6880 xpcomen 6883 xpassen 6886 xpmapenlem 6907 0ct 7168 exmidomni 7203 exmidfodomrlemim 7263 2omotaplemst 7320 enqex 7422 nqex 7425 enq0ex 7501 nq0ex 7502 npex 7535 enrex 7799 addvalex 7906 axcnex 7921 addex 9720 mulex 9721 ixxex 9968 fxnn0nninf 10513 inftonninf 10516 shftfval 10968 nninfct 12181 qnumval 12326 qdenval 12327 qnnen 12591 prdsex 12883 metuex 14054 cnfldstr 14057 cnfldle 14066 znval 14135 znle 14136 znbaslemnn 14138 fnpsr 14164 txuni2 14435 txbas 14437 eltx 14438 txcnp 14450 txcnmpt 14452 txrest 14455 txlm 14458 reldvg 14858 |
Copyright terms: Public domain | W3C validator |