| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 |
|
| xpex.2 |
|
| Ref | Expression |
|---|---|
| xpex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 |
. 2
| |
| 2 | xpex.2 |
. 2
| |
| 3 | xpexg 4807 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-opab 4122 df-xp 4699 |
| This theorem is referenced by: oprabex 6236 oprabex3 6237 mpoexw 6322 fnpm 6766 mapsnf1o2 6806 xpsnen 6941 endisj 6944 xpcomen 6947 xpassen 6950 xpmapenlem 6971 0ct 7235 exmidomni 7270 exmidfodomrlemim 7340 2omotaplemst 7405 enqex 7508 nqex 7511 enq0ex 7587 nq0ex 7588 npex 7621 enrex 7885 addvalex 7992 axcnex 8007 addex 9808 mulex 9809 ixxex 10056 fxnn0nninf 10621 inftonninf 10624 shftfval 11247 nninfct 12477 qnumval 12622 qdenval 12623 qnnen 12917 prdsex 13216 metuex 14432 cnfldstr 14435 cnfldle 14444 znval 14513 znle 14514 znbaslemnn 14516 fnpsr 14544 txuni2 14843 txbas 14845 eltx 14846 txcnp 14858 txcnmpt 14860 txrest 14863 txlm 14866 reldvg 15266 |
| Copyright terms: Public domain | W3C validator |