Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpex | Unicode version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpex.1 | |
xpex.2 |
Ref | Expression |
---|---|
xpex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpex.1 | . 2 | |
2 | xpex.2 | . 2 | |
3 | xpexg 4734 | . 2 | |
4 | 1, 2, 3 | mp2an 426 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 cvv 2735 cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-opab 4060 df-xp 4626 |
This theorem is referenced by: oprabex 6119 oprabex3 6120 mpoexw 6204 fnpm 6646 mapsnf1o2 6686 xpsnen 6811 endisj 6814 xpcomen 6817 xpassen 6820 xpmapenlem 6839 0ct 7096 exmidomni 7130 exmidfodomrlemim 7190 enqex 7334 nqex 7337 enq0ex 7413 nq0ex 7414 npex 7447 enrex 7711 addvalex 7818 axcnex 7833 ixxex 9868 fxnn0nninf 10406 inftonninf 10409 shftfval 10796 qnumval 12150 qdenval 12151 qnnen 12397 txuni2 13307 txbas 13309 eltx 13310 txcnp 13322 txcnmpt 13324 txrest 13327 txlm 13330 reldvg 13699 |
Copyright terms: Public domain | W3C validator |