| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 |
|
| xpex.2 |
|
| Ref | Expression |
|---|---|
| xpex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 |
. 2
| |
| 2 | xpex.2 |
. 2
| |
| 3 | xpexg 4788 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-opab 4105 df-xp 4680 |
| This theorem is referenced by: oprabex 6212 oprabex3 6213 mpoexw 6298 fnpm 6742 mapsnf1o2 6782 xpsnen 6915 endisj 6918 xpcomen 6921 xpassen 6924 xpmapenlem 6945 0ct 7208 exmidomni 7243 exmidfodomrlemim 7308 2omotaplemst 7369 enqex 7472 nqex 7475 enq0ex 7551 nq0ex 7552 npex 7585 enrex 7849 addvalex 7956 axcnex 7971 addex 9772 mulex 9773 ixxex 10020 fxnn0nninf 10582 inftonninf 10585 shftfval 11103 nninfct 12333 qnumval 12478 qdenval 12479 qnnen 12773 prdsex 13072 metuex 14288 cnfldstr 14291 cnfldle 14300 znval 14369 znle 14370 znbaslemnn 14372 fnpsr 14400 txuni2 14699 txbas 14701 eltx 14702 txcnp 14714 txcnmpt 14716 txrest 14719 txlm 14722 reldvg 15122 |
| Copyright terms: Public domain | W3C validator |