| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 |
|
| xpex.2 |
|
| Ref | Expression |
|---|---|
| xpex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 |
. 2
| |
| 2 | xpex.2 |
. 2
| |
| 3 | xpexg 4832 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: oprabex 6271 oprabex3 6272 mpoexw 6357 fnpm 6801 mapsnf1o2 6841 xpsnen 6976 endisj 6979 xpcomen 6982 xpassen 6985 xpmapenlem 7006 0ct 7270 exmidomni 7305 exmidfodomrlemim 7375 2omotaplemst 7440 enqex 7543 nqex 7546 enq0ex 7622 nq0ex 7623 npex 7656 enrex 7920 addvalex 8027 axcnex 8042 addex 9843 mulex 9844 ixxex 10091 fxnn0nninf 10656 inftonninf 10659 shftfval 11327 nninfct 12557 qnumval 12702 qdenval 12703 qnnen 12997 prdsex 13297 metuex 14513 cnfldstr 14516 cnfldle 14525 znval 14594 znle 14595 znbaslemnn 14597 fnpsr 14625 txuni2 14924 txbas 14926 eltx 14927 txcnp 14939 txcnmpt 14941 txrest 14944 txlm 14947 reldvg 15347 |
| Copyright terms: Public domain | W3C validator |