| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 |
|
| xpex.2 |
|
| Ref | Expression |
|---|---|
| xpex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 |
. 2
| |
| 2 | xpex.2 |
. 2
| |
| 3 | xpexg 4789 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: oprabex 6213 oprabex3 6214 mpoexw 6299 fnpm 6743 mapsnf1o2 6783 xpsnen 6916 endisj 6919 xpcomen 6922 xpassen 6925 xpmapenlem 6946 0ct 7209 exmidomni 7244 exmidfodomrlemim 7309 2omotaplemst 7370 enqex 7473 nqex 7476 enq0ex 7552 nq0ex 7553 npex 7586 enrex 7850 addvalex 7957 axcnex 7972 addex 9773 mulex 9774 ixxex 10021 fxnn0nninf 10584 inftonninf 10587 shftfval 11132 nninfct 12362 qnumval 12507 qdenval 12508 qnnen 12802 prdsex 13101 metuex 14317 cnfldstr 14320 cnfldle 14329 znval 14398 znle 14399 znbaslemnn 14401 fnpsr 14429 txuni2 14728 txbas 14730 eltx 14731 txcnp 14743 txcnmpt 14745 txrest 14748 txlm 14751 reldvg 15151 |
| Copyright terms: Public domain | W3C validator |