| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpex | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpex.1 |
|
| xpex.2 |
|
| Ref | Expression |
|---|---|
| xpex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpex.1 |
. 2
| |
| 2 | xpex.2 |
. 2
| |
| 3 | xpexg 4778 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: oprabex 6194 oprabex3 6195 mpoexw 6280 fnpm 6724 mapsnf1o2 6764 xpsnen 6889 endisj 6892 xpcomen 6895 xpassen 6898 xpmapenlem 6919 0ct 7182 exmidomni 7217 exmidfodomrlemim 7280 2omotaplemst 7341 enqex 7444 nqex 7447 enq0ex 7523 nq0ex 7524 npex 7557 enrex 7821 addvalex 7928 axcnex 7943 addex 9743 mulex 9744 ixxex 9991 fxnn0nninf 10548 inftonninf 10551 shftfval 11003 nninfct 12233 qnumval 12378 qdenval 12379 qnnen 12673 prdsex 12971 metuex 14187 cnfldstr 14190 cnfldle 14199 znval 14268 znle 14269 znbaslemnn 14271 fnpsr 14297 txuni2 14576 txbas 14578 eltx 14579 txcnp 14591 txcnmpt 14593 txrest 14596 txlm 14599 reldvg 14999 |
| Copyright terms: Public domain | W3C validator |