ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssresb Unicode version

Theorem fnssresb 5407
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 5293 . 2  |-  ( ( F  |`  B )  Fn  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) )
2 fnfun 5390 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
3 funres 5331 . . . . 5  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
42, 3syl 14 . . . 4  |-  ( F  Fn  A  ->  Fun  ( F  |`  B ) )
54biantrurd 305 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) ) )
6 ssdmres 5000 . . . 4  |-  ( B 
C_  dom  F  <->  dom  ( F  |`  B )  =  B )
7 fndm 5392 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87sseq2d 3231 . . . 4  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
96, 8bitr3id 194 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  B  C_  A
) )
105, 9bitr3d 190 . 2  |-  ( F  Fn  A  ->  (
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B )  <->  B  C_  A
) )
111, 10bitrid 192 1  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    C_ wss 3174   dom cdm 4693    |` cres 4695   Fun wfun 5284    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-fun 5292  df-fn 5293
This theorem is referenced by:  fnssres  5408  wrdred1hash  11074  plyreres  15351
  Copyright terms: Public domain W3C validator