ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnssresb Unicode version

Theorem fnssresb 5388
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
fnssresb  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )

Proof of Theorem fnssresb
StepHypRef Expression
1 df-fn 5274 . 2  |-  ( ( F  |`  B )  Fn  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) )
2 fnfun 5371 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
3 funres 5312 . . . . 5  |-  ( Fun 
F  ->  Fun  ( F  |`  B ) )
42, 3syl 14 . . . 4  |-  ( F  Fn  A  ->  Fun  ( F  |`  B ) )
54biantrurd 305 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  ( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B ) ) )
6 ssdmres 4981 . . . 4  |-  ( B 
C_  dom  F  <->  dom  ( F  |`  B )  =  B )
7 fndm 5373 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
87sseq2d 3223 . . . 4  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
96, 8bitr3id 194 . . 3  |-  ( F  Fn  A  ->  ( dom  ( F  |`  B )  =  B  <->  B  C_  A
) )
105, 9bitr3d 190 . 2  |-  ( F  Fn  A  ->  (
( Fun  ( F  |`  B )  /\  dom  ( F  |`  B )  =  B )  <->  B  C_  A
) )
111, 10bitrid 192 1  |-  ( F  Fn  A  ->  (
( F  |`  B )  Fn  B  <->  B  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    C_ wss 3166   dom cdm 4675    |` cres 4677   Fun wfun 5265    Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-fun 5273  df-fn 5274
This theorem is referenced by:  fnssres  5389  wrdred1hash  11037  plyreres  15236
  Copyright terms: Public domain W3C validator