ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdmres GIF version

Theorem ssdmres 4845
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
Assertion
Ref Expression
ssdmres (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵𝐴) = 𝐴)

Proof of Theorem ssdmres
StepHypRef Expression
1 df-ss 3085 . 2 (𝐴 ⊆ dom 𝐵 ↔ (𝐴 ∩ dom 𝐵) = 𝐴)
2 dmres 4844 . . 3 dom (𝐵𝐴) = (𝐴 ∩ dom 𝐵)
32eqeq1i 2148 . 2 (dom (𝐵𝐴) = 𝐴 ↔ (𝐴 ∩ dom 𝐵) = 𝐴)
41, 3bitr4i 186 1 (𝐴 ⊆ dom 𝐵 ↔ dom (𝐵𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1332  cin 3071  wss 3072  dom cdm 4543  cres 4545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2689  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-br 3934  df-opab 3994  df-xp 4549  df-dm 4553  df-res 4555
This theorem is referenced by:  dmresi  4878  fnssresb  5239  fores  5358  foimacnv  5389  rdgivallem  6282  sbthlemi4  6852
  Copyright terms: Public domain W3C validator