ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin Unicode version

Theorem uzin 9562
Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= `  N ) )  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )

Proof of Theorem uzin
StepHypRef Expression
1 uztric 9551 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
2 uzss 9550 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
3 sseqin2 3356 . . . . 5  |-  ( (
ZZ>= `  N )  C_  ( ZZ>= `  M )  <->  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  N ) )
42, 3sylib 122 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  N ) )
5 eluzle 9542 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
6 iftrue 3541 . . . . . 6  |-  ( M  <_  N  ->  if ( M  <_  N ,  N ,  M )  =  N )
75, 6syl 14 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  if ( M  <_  N ,  N ,  M )  =  N )
87fveq2d 5521 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) )  =  ( ZZ>= `  N ) )
94, 8eqtr4d 2213 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
10 uzss 9550 . . . . 5  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ZZ>= `  M )  C_  ( ZZ>=
`  N ) )
11 df-ss 3144 . . . . 5  |-  ( (
ZZ>= `  M )  C_  ( ZZ>= `  N )  <->  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  M ) )
1210, 11sylib 122 . . . 4  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  M ) )
13 eluzel2 9535 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
14 eluzelz 9539 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  N
)  ->  M  e.  ZZ )
15 zre 9259 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  RR )
16 zre 9259 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  RR )
17 letri3 8040 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( N  =  M  <-> 
( N  <_  M  /\  M  <_  N ) ) )
1815, 16, 17syl2an 289 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  =  M  <-> 
( N  <_  M  /\  M  <_  N ) ) )
1913, 14, 18syl2anc 411 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( N  =  M  <->  ( N  <_  M  /\  M  <_  N
) ) )
20 eluzle 9542 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
2120biantrurd 305 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( M  <_  N  <->  ( N  <_  M  /\  M  <_  N
) ) )
2219, 21bitr4d 191 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( N  =  M  <->  M  <_  N ) )
2322biimprcd 160 . . . . . . . 8  |-  ( M  <_  N  ->  ( M  e.  ( ZZ>= `  N )  ->  N  =  M ) )
246eqeq1d 2186 . . . . . . . 8  |-  ( M  <_  N  ->  ( if ( M  <_  N ,  N ,  M )  =  M  <->  N  =  M ) )
2523, 24sylibrd 169 . . . . . . 7  |-  ( M  <_  N  ->  ( M  e.  ( ZZ>= `  N )  ->  if ( M  <_  N ,  N ,  M )  =  M ) )
2625com12 30 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( M  <_  N  ->  if ( M  <_  N ,  N ,  M )  =  M ) )
27 iffalse 3544 . . . . . . 7  |-  ( -.  M  <_  N  ->  if ( M  <_  N ,  N ,  M )  =  M )
2827a1i 9 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( -.  M  <_  N  ->  if ( M  <_  N ,  N ,  M )  =  M ) )
29 zdcle 9331 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  <_  N )
3014, 13, 29syl2anc 411 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  N
)  -> DECID  M  <_  N )
31 df-dc 835 . . . . . . 7  |-  (DECID  M  <_  N 
<->  ( M  <_  N  \/  -.  M  <_  N
) )
3230, 31sylib 122 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( M  <_  N  \/  -.  M  <_  N ) )
3326, 28, 32mpjaod 718 . . . . 5  |-  ( M  e.  ( ZZ>= `  N
)  ->  if ( M  <_  N ,  N ,  M )  =  M )
3433fveq2d 5521 . . . 4  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) )  =  ( ZZ>= `  M ) )
3512, 34eqtr4d 2213 . . 3  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
369, 35jaoi 716 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N )
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
371, 36syl 14 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= `  N ) )  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    i^i cin 3130    C_ wss 3131   ifcif 3536   class class class wbr 4005   ` cfv 5218   RRcr 7812    <_ cle 7995   ZZcz 9255   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  uzin2  10998  explecnv  11515
  Copyright terms: Public domain W3C validator