ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin Unicode version

Theorem uzin 9683
Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= `  N ) )  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )

Proof of Theorem uzin
StepHypRef Expression
1 uztric 9672 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N ) ) )
2 uzss 9671 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  N )  C_  ( ZZ>=
`  M ) )
3 sseqin2 3392 . . . . 5  |-  ( (
ZZ>= `  N )  C_  ( ZZ>= `  M )  <->  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  N ) )
42, 3sylib 122 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  N ) )
5 eluzle 9662 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
6 iftrue 3576 . . . . . 6  |-  ( M  <_  N  ->  if ( M  <_  N ,  N ,  M )  =  N )
75, 6syl 14 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  if ( M  <_  N ,  N ,  M )  =  N )
87fveq2d 5582 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) )  =  ( ZZ>= `  N ) )
94, 8eqtr4d 2241 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
10 uzss 9671 . . . . 5  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ZZ>= `  M )  C_  ( ZZ>=
`  N ) )
11 df-ss 3179 . . . . 5  |-  ( (
ZZ>= `  M )  C_  ( ZZ>= `  N )  <->  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  M ) )
1210, 11sylib 122 . . . 4  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  M ) )
13 eluzel2 9655 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
14 eluzelz 9659 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  N
)  ->  M  e.  ZZ )
15 zre 9378 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  RR )
16 zre 9378 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  RR )
17 letri3 8155 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( N  =  M  <-> 
( N  <_  M  /\  M  <_  N ) ) )
1815, 16, 17syl2an 289 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  =  M  <-> 
( N  <_  M  /\  M  <_  N ) ) )
1913, 14, 18syl2anc 411 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( N  =  M  <->  ( N  <_  M  /\  M  <_  N
) ) )
20 eluzle 9662 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
2120biantrurd 305 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( M  <_  N  <->  ( N  <_  M  /\  M  <_  N
) ) )
2219, 21bitr4d 191 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( N  =  M  <->  M  <_  N ) )
2322biimprcd 160 . . . . . . . 8  |-  ( M  <_  N  ->  ( M  e.  ( ZZ>= `  N )  ->  N  =  M ) )
246eqeq1d 2214 . . . . . . . 8  |-  ( M  <_  N  ->  ( if ( M  <_  N ,  N ,  M )  =  M  <->  N  =  M ) )
2523, 24sylibrd 169 . . . . . . 7  |-  ( M  <_  N  ->  ( M  e.  ( ZZ>= `  N )  ->  if ( M  <_  N ,  N ,  M )  =  M ) )
2625com12 30 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( M  <_  N  ->  if ( M  <_  N ,  N ,  M )  =  M ) )
27 iffalse 3579 . . . . . . 7  |-  ( -.  M  <_  N  ->  if ( M  <_  N ,  N ,  M )  =  M )
2827a1i 9 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( -.  M  <_  N  ->  if ( M  <_  N ,  N ,  M )  =  M ) )
29 zdcle 9451 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  <_  N )
3014, 13, 29syl2anc 411 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  N
)  -> DECID  M  <_  N )
31 df-dc 837 . . . . . . 7  |-  (DECID  M  <_  N 
<->  ( M  <_  N  \/  -.  M  <_  N
) )
3230, 31sylib 122 . . . . . 6  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( M  <_  N  \/  -.  M  <_  N ) )
3326, 28, 32mpjaod 720 . . . . 5  |-  ( M  e.  ( ZZ>= `  N
)  ->  if ( M  <_  N ,  N ,  M )  =  M )
3433fveq2d 5582 . . . 4  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) )  =  ( ZZ>= `  M ) )
3512, 34eqtr4d 2241 . . 3  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
369, 35jaoi 718 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  \/  M  e.  ( ZZ>= `  N )
)  ->  ( ( ZZ>=
`  M )  i^i  ( ZZ>= `  N )
)  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
371, 36syl 14 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= `  N ) )  =  ( ZZ>= `  if ( M  <_  N ,  N ,  M ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176    i^i cin 3165    C_ wss 3166   ifcif 3571   class class class wbr 4045   ` cfv 5272   RRcr 7926    <_ cle 8110   ZZcz 9374   ZZ>=cuz 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651
This theorem is referenced by:  uzin2  11331  explecnv  11849
  Copyright terms: Public domain W3C validator