ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrdi GIF version

Theorem sseqtrdi 3231
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrdi.1 (𝜑𝐴𝐵)
sseqtrdi.2 𝐵 = 𝐶
Assertion
Ref Expression
sseqtrdi (𝜑𝐴𝐶)

Proof of Theorem sseqtrdi
StepHypRef Expression
1 sseqtrdi.1 . 2 (𝜑𝐴𝐵)
2 sseqtrdi.2 . . 3 𝐵 = 𝐶
32sseq2i 3210 . 2 (𝐴𝐵𝐴𝐶)
41, 3sylib 122 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  sseqtrrdi  3232  onintonm  4553  relrelss  5196  iotanul  5234  foimacnv  5522  cauappcvgprlemladdru  7723  nninfdcex  10327  zsupssdc  10328  zsumdc  11549  fsum3cvg3  11561  zproddc  11744  imasaddfnlemg  12957  sraring  14005  distop  14321  cnptoprest  14475  pwle2  15643  pw1nct  15647
  Copyright terms: Public domain W3C validator