![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrdi | GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrdi.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
sseqtrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrdi.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | sseq2i 3206 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
4 | 1, 3 | sylib 122 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sseqtrrdi 3228 onintonm 4549 relrelss 5192 iotanul 5230 foimacnv 5518 cauappcvgprlemladdru 7716 zsumdc 11527 fsum3cvg3 11539 zproddc 11722 nninfdcex 12090 zsupssdc 12091 imasaddfnlemg 12897 sraring 13945 distop 14253 cnptoprest 14407 pwle2 15489 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |