ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrdi GIF version

Theorem sseqtrdi 3218
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrdi.1 (𝜑𝐴𝐵)
sseqtrdi.2 𝐵 = 𝐶
Assertion
Ref Expression
sseqtrdi (𝜑𝐴𝐶)

Proof of Theorem sseqtrdi
StepHypRef Expression
1 sseqtrdi.1 . 2 (𝜑𝐴𝐵)
2 sseqtrdi.2 . . 3 𝐵 = 𝐶
32sseq2i 3197 . 2 (𝐴𝐵𝐴𝐶)
41, 3sylib 122 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  sseqtrrdi  3219  onintonm  4534  relrelss  5173  iotanul  5211  foimacnv  5498  cauappcvgprlemladdru  7686  zsumdc  11427  fsum3cvg3  11439  zproddc  11622  nninfdcex  11989  zsupssdc  11990  imasaddfnlemg  12794  sraring  13782  distop  14062  cnptoprest  14216  pwle2  15227  pw1nct  15231
  Copyright terms: Public domain W3C validator