| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrdi.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| sseqtrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrdi.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | sseq2i 3251 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
| 4 | 1, 3 | sylib 122 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtrrdi 3273 onintonm 4609 relrelss 5255 iotanul 5294 foimacnv 5592 pw1m 7417 cauappcvgprlemladdru 7851 nninfdcex 10465 zsupssdc 10466 zsumdc 11903 fsum3cvg3 11915 zproddc 12098 imasaddfnlemg 13355 sraring 14421 distop 14767 cnptoprest 14921 upgr1edc 15929 pw1ndom3lem 16382 pwle2 16393 pw1nct 16398 |
| Copyright terms: Public domain | W3C validator |