Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrdi | GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrdi.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
sseqtrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrdi.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | sseq2i 3169 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
4 | 1, 3 | sylib 121 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sseqtrrdi 3191 onintonm 4494 relrelss 5130 iotanul 5168 foimacnv 5450 cauappcvgprlemladdru 7597 zsumdc 11325 fsum3cvg3 11337 zproddc 11520 nninfdcex 11886 zsupssdc 11887 distop 12725 cnptoprest 12879 pwle2 13878 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |