![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrdi | GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrdi.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
sseqtrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrdi.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | sseq2i 3197 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
4 | 1, 3 | sylib 122 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: sseqtrrdi 3219 onintonm 4534 relrelss 5173 iotanul 5211 foimacnv 5498 cauappcvgprlemladdru 7686 zsumdc 11427 fsum3cvg3 11439 zproddc 11622 nninfdcex 11989 zsupssdc 11990 imasaddfnlemg 12794 sraring 13782 distop 14062 cnptoprest 14216 pwle2 15227 pw1nct 15231 |
Copyright terms: Public domain | W3C validator |