ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrdi GIF version

Theorem sseqtrdi 3227
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrdi.1 (𝜑𝐴𝐵)
sseqtrdi.2 𝐵 = 𝐶
Assertion
Ref Expression
sseqtrdi (𝜑𝐴𝐶)

Proof of Theorem sseqtrdi
StepHypRef Expression
1 sseqtrdi.1 . 2 (𝜑𝐴𝐵)
2 sseqtrdi.2 . . 3 𝐵 = 𝐶
32sseq2i 3206 . 2 (𝐴𝐵𝐴𝐶)
41, 3sylib 122 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  sseqtrrdi  3228  onintonm  4549  relrelss  5192  iotanul  5230  foimacnv  5518  cauappcvgprlemladdru  7716  zsumdc  11527  fsum3cvg3  11539  zproddc  11722  nninfdcex  12090  zsupssdc  12091  imasaddfnlemg  12897  sraring  13945  distop  14253  cnptoprest  14407  pwle2  15489  pw1nct  15493
  Copyright terms: Public domain W3C validator