ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrdi GIF version

Theorem sseqtrdi 3272
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrdi.1 (𝜑𝐴𝐵)
sseqtrdi.2 𝐵 = 𝐶
Assertion
Ref Expression
sseqtrdi (𝜑𝐴𝐶)

Proof of Theorem sseqtrdi
StepHypRef Expression
1 sseqtrdi.1 . 2 (𝜑𝐴𝐵)
2 sseqtrdi.2 . . 3 𝐵 = 𝐶
32sseq2i 3251 . 2 (𝐴𝐵𝐴𝐶)
41, 3sylib 122 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sseqtrrdi  3273  onintonm  4609  relrelss  5255  iotanul  5294  foimacnv  5592  pw1m  7417  cauappcvgprlemladdru  7851  nninfdcex  10465  zsupssdc  10466  zsumdc  11903  fsum3cvg3  11915  zproddc  12098  imasaddfnlemg  13355  sraring  14421  distop  14767  cnptoprest  14921  upgr1edc  15929  pw1ndom3lem  16382  pwle2  16393  pw1nct  16398
  Copyright terms: Public domain W3C validator