| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sseqtrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) | 
| Ref | Expression | 
|---|---|
| sseqtrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | 
| sseqtrdi.2 | ⊢ 𝐵 = 𝐶 | 
| Ref | Expression | 
|---|---|
| sseqtrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrdi.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | sseq2i 3210 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) | 
| 4 | 1, 3 | sylib 122 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: sseqtrrdi 3232 onintonm 4553 relrelss 5196 iotanul 5234 foimacnv 5522 cauappcvgprlemladdru 7723 nninfdcex 10327 zsupssdc 10328 zsumdc 11549 fsum3cvg3 11561 zproddc 11744 imasaddfnlemg 12957 sraring 14005 distop 14321 cnptoprest 14475 pwle2 15643 pw1nct 15647 | 
| Copyright terms: Public domain | W3C validator |