| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrdi.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| sseqtrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrdi.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | sseq2i 3221 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
| 4 | 1, 3 | sylib 122 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: sseqtrrdi 3243 onintonm 4569 relrelss 5214 iotanul 5252 foimacnv 5547 cauappcvgprlemladdru 7776 nninfdcex 10387 zsupssdc 10388 zsumdc 11739 fsum3cvg3 11751 zproddc 11934 imasaddfnlemg 13190 sraring 14255 distop 14601 cnptoprest 14755 pwle2 16009 pw1nct 16014 |
| Copyright terms: Public domain | W3C validator |