ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcel Unicode version

Theorem unsnfidcel 6817
Description: The  -.  B  e.  A condition in unsnfi 6815. This is intended to show that unsnfi 6815 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcel  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  A
)

Proof of Theorem unsnfidcel
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6663 . . . . 5  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . . 4  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1003 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6663 . . . . . . 7  |-  ( ( A  u.  { B } )  e.  Fin  <->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
54biimpi 119 . . . . . 6  |-  ( ( A  u.  { B } )  e.  Fin  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
653ad2ant3 1005 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
76adantr 274 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
8 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  ( A  u.  { B } )  ~~  m )
98ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  ( A  u.  { B } )  ~~  m
)
10 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  ~~  n )
1110ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  A  ~~  n )
12 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  m  =  n )
1311, 12breqtrrd 3964 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  A  ~~  m )
1413ensymd 6685 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  m  ~~  A )
15 entr 6686 . . . . . . . . 9  |-  ( ( ( A  u.  { B } )  ~~  m  /\  m  ~~  A )  ->  ( A  u.  { B } )  ~~  A )
169, 14, 15syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  ( A  u.  { B } )  ~~  A
)
1716ensymd 6685 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  A  ~~  ( A  u.  { B }
) )
18 simp1 982 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  ->  A  e.  Fin )
1918ad4antr 486 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  A  e.  Fin )
20 simpl2 986 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  B  e.  V )
2120ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  B  e.  V )
2221elexd 2702 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  B  e.  _V )
23 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  -.  B  e.  A
)
2422, 23eldifd 3086 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  B  e.  ( _V 
\  A ) )
25 php5fin 6784 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
2619, 24, 25syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  -.  A  ~~  ( A  u.  { B } ) )
2717, 26pm2.65da 651 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  -.  -.  B  e.  A
)
2827olcd 724 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  ( -.  B  e.  A  \/  -.  -.  B  e.  A ) )
298ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  ( A  u.  { B } ) 
~~  m )
30 snssi 3672 . . . . . . . . . . . . . 14  |-  ( B  e.  A  ->  { B }  C_  A )
31 ssequn2 3254 . . . . . . . . . . . . . 14  |-  ( { B }  C_  A  <->  ( A  u.  { B } )  =  A )
3230, 31sylib 121 . . . . . . . . . . . . 13  |-  ( B  e.  A  ->  ( A  u.  { B } )  =  A )
3332breq1d 3947 . . . . . . . . . . . 12  |-  ( B  e.  A  ->  (
( A  u.  { B } )  ~~  m  <->  A 
~~  m ) )
3433adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  ( ( A  u.  { B } )  ~~  m  <->  A 
~~  m ) )
3529, 34mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  A  ~~  m )
3635ensymd 6685 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  m  ~~  A )
3710ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  A  ~~  n )
38 entr 6686 . . . . . . . . 9  |-  ( ( m  ~~  A  /\  A  ~~  n )  ->  m  ~~  n )
3936, 37, 38syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  m  ~~  n )
40 simprl 521 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  m  e.  om )
4140ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  m  e.  om )
42 simprl 521 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  n  e.  om )
4342ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  n  e.  om )
44 nneneq 6759 . . . . . . . . 9  |-  ( ( m  e.  om  /\  n  e.  om )  ->  ( m  ~~  n  <->  m  =  n ) )
4541, 43, 44syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  ( m  ~~  n  <->  m  =  n
) )
4639, 45mpbid 146 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  m  =  n )
47 simplr 520 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  -.  m  =  n )
4846, 47pm2.65da 651 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  -.  B  e.  A
)
4948orcd 723 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  ( -.  B  e.  A  \/  -.  -.  B  e.  A )
)
5042adantr 274 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  n  e.  om )
51 nndceq 6403 . . . . . . 7  |-  ( ( m  e.  om  /\  n  e.  om )  -> DECID  m  =  n )
5240, 50, 51syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  -> DECID 
m  =  n )
53 exmiddc 822 . . . . . 6  |-  (DECID  m  =  n  ->  ( m  =  n  \/  -.  m  =  n )
)
5452, 53syl 14 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  ( m  =  n  \/  -.  m  =  n ) )
5528, 49, 54mpjaodan 788 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  ( -.  B  e.  A  \/  -.  -.  B  e.  A
) )
567, 55rexlimddv 2557 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( -.  B  e.  A  \/  -.  -.  B  e.  A )
)
573, 56rexlimddv 2557 . 2  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  ->  ( -.  B  e.  A  \/  -.  -.  B  e.  A
) )
58 df-dc 821 . 2  |-  (DECID  -.  B  e.  A  <->  ( -.  B  e.  A  \/  -.  -.  B  e.  A
) )
5957, 58sylibr 133 1  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    /\ w3a 963    = wceq 1332    e. wcel 1481   E.wrex 2418   _Vcvv 2689    \ cdif 3073    u. cun 3074    C_ wss 3076   {csn 3532   class class class wbr 3937   omcom 4512    ~~ cen 6640   Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-er 6437  df-en 6643  df-fin 6645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator