ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unsnfidcel Unicode version

Theorem unsnfidcel 6865
Description: The  -.  B  e.  A condition in unsnfi 6863. This is intended to show that unsnfi 6863 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
Assertion
Ref Expression
unsnfidcel  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  A
)

Proof of Theorem unsnfidcel
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6706 . . . . 5  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . . 4  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1003 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6706 . . . . . . 7  |-  ( ( A  u.  { B } )  e.  Fin  <->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
54biimpi 119 . . . . . 6  |-  ( ( A  u.  { B } )  e.  Fin  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
653ad2ant3 1005 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
76adantr 274 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  ( A  u.  { B } )  ~~  m
)
8 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  ( A  u.  { B } )  ~~  m )
98ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  ( A  u.  { B } )  ~~  m
)
10 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  ~~  n )
1110ad3antrrr 484 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  A  ~~  n )
12 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  m  =  n )
1311, 12breqtrrd 3992 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  A  ~~  m )
1413ensymd 6728 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  m  ~~  A )
15 entr 6729 . . . . . . . . 9  |-  ( ( ( A  u.  { B } )  ~~  m  /\  m  ~~  A )  ->  ( A  u.  { B } )  ~~  A )
169, 14, 15syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  ( A  u.  { B } )  ~~  A
)
1716ensymd 6728 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  A  ~~  ( A  u.  { B }
) )
18 simp1 982 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  ->  A  e.  Fin )
1918ad4antr 486 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  A  e.  Fin )
20 simpl2 986 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  B  e.  V )
2120ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  B  e.  V )
2221elexd 2725 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  B  e.  _V )
23 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  -.  B  e.  A
)
2422, 23eldifd 3112 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  B  e.  ( _V 
\  A ) )
25 php5fin 6827 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
2619, 24, 25syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  /\  -.  B  e.  A )  ->  -.  A  ~~  ( A  u.  { B } ) )
2717, 26pm2.65da 651 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  -.  -.  B  e.  A
)
2827olcd 724 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  m  =  n )  ->  ( -.  B  e.  A  \/  -.  -.  B  e.  A ) )
298ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  ( A  u.  { B } ) 
~~  m )
30 snssi 3700 . . . . . . . . . . . . . 14  |-  ( B  e.  A  ->  { B }  C_  A )
31 ssequn2 3280 . . . . . . . . . . . . . 14  |-  ( { B }  C_  A  <->  ( A  u.  { B } )  =  A )
3230, 31sylib 121 . . . . . . . . . . . . 13  |-  ( B  e.  A  ->  ( A  u.  { B } )  =  A )
3332breq1d 3975 . . . . . . . . . . . 12  |-  ( B  e.  A  ->  (
( A  u.  { B } )  ~~  m  <->  A 
~~  m ) )
3433adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  ( ( A  u.  { B } )  ~~  m  <->  A 
~~  m ) )
3529, 34mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  A  ~~  m )
3635ensymd 6728 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  m  ~~  A )
3710ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  A  ~~  n )
38 entr 6729 . . . . . . . . 9  |-  ( ( m  ~~  A  /\  A  ~~  n )  ->  m  ~~  n )
3936, 37, 38syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  m  ~~  n )
40 simprl 521 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  m  e.  om )
4140ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  m  e.  om )
42 simprl 521 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  n  e.  om )
4342ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  n  e.  om )
44 nneneq 6802 . . . . . . . . 9  |-  ( ( m  e.  om  /\  n  e.  om )  ->  ( m  ~~  n  <->  m  =  n ) )
4541, 43, 44syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  ( m  ~~  n  <->  m  =  n
) )
4639, 45mpbid 146 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  m  =  n )
47 simplr 520 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  /\  B  e.  A
)  ->  -.  m  =  n )
4846, 47pm2.65da 651 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  -.  B  e.  A
)
4948orcd 723 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  ( A  u.  { B } )  ~~  m
) )  /\  -.  m  =  n )  ->  ( -.  B  e.  A  \/  -.  -.  B  e.  A )
)
5042adantr 274 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  n  e.  om )
51 nndceq 6446 . . . . . . 7  |-  ( ( m  e.  om  /\  n  e.  om )  -> DECID  m  =  n )
5240, 50, 51syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  -> DECID 
m  =  n )
53 exmiddc 822 . . . . . 6  |-  (DECID  m  =  n  ->  ( m  =  n  \/  -.  m  =  n )
)
5452, 53syl 14 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  ( m  =  n  \/  -.  m  =  n ) )
5528, 49, 54mpjaodan 788 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e. 
Fin )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  ( A  u.  { B } ) 
~~  m ) )  ->  ( -.  B  e.  A  \/  -.  -.  B  e.  A
) )
567, 55rexlimddv 2579 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( -.  B  e.  A  \/  -.  -.  B  e.  A )
)
573, 56rexlimddv 2579 . 2  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  ->  ( -.  B  e.  A  \/  -.  -.  B  e.  A
) )
58 df-dc 821 . 2  |-  (DECID  -.  B  e.  A  <->  ( -.  B  e.  A  \/  -.  -.  B  e.  A
) )
5957, 58sylibr 133 1  |-  ( ( A  e.  Fin  /\  B  e.  V  /\  ( A  u.  { B } )  e.  Fin )  -> DECID  -.  B  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    /\ w3a 963    = wceq 1335    e. wcel 2128   E.wrex 2436   _Vcvv 2712    \ cdif 3099    u. cun 3100    C_ wss 3102   {csn 3560   class class class wbr 3965   omcom 4549    ~~ cen 6683   Fincfn 6685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-1o 6363  df-er 6480  df-en 6686  df-fin 6688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator