| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unsnfidcel | Unicode version | ||
| Description: The  | 
| Ref | Expression | 
|---|---|
| unsnfidcel | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isfi 6820 | 
. . . . 5
 | |
| 2 | 1 | biimpi 120 | 
. . . 4
 | 
| 3 | 2 | 3ad2ant1 1020 | 
. . 3
 | 
| 4 | isfi 6820 | 
. . . . . . 7
 | |
| 5 | 4 | biimpi 120 | 
. . . . . 6
 | 
| 6 | 5 | 3ad2ant3 1022 | 
. . . . 5
 | 
| 7 | 6 | adantr 276 | 
. . . 4
 | 
| 8 | simprr 531 | 
. . . . . . . . . 10
 | |
| 9 | 8 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 10 | simprr 531 | 
. . . . . . . . . . . 12
 | |
| 11 | 10 | ad3antrrr 492 | 
. . . . . . . . . . 11
 | 
| 12 | simplr 528 | 
. . . . . . . . . . 11
 | |
| 13 | 11, 12 | breqtrrd 4061 | 
. . . . . . . . . 10
 | 
| 14 | 13 | ensymd 6842 | 
. . . . . . . . 9
 | 
| 15 | entr 6843 | 
. . . . . . . . 9
 | |
| 16 | 9, 14, 15 | syl2anc 411 | 
. . . . . . . 8
 | 
| 17 | 16 | ensymd 6842 | 
. . . . . . 7
 | 
| 18 | simp1 999 | 
. . . . . . . . 9
 | |
| 19 | 18 | ad4antr 494 | 
. . . . . . . 8
 | 
| 20 | simpl2 1003 | 
. . . . . . . . . . 11
 | |
| 21 | 20 | ad3antrrr 492 | 
. . . . . . . . . 10
 | 
| 22 | 21 | elexd 2776 | 
. . . . . . . . 9
 | 
| 23 | simpr 110 | 
. . . . . . . . 9
 | |
| 24 | 22, 23 | eldifd 3167 | 
. . . . . . . 8
 | 
| 25 | php5fin 6943 | 
. . . . . . . 8
 | |
| 26 | 19, 24, 25 | syl2anc 411 | 
. . . . . . 7
 | 
| 27 | 17, 26 | pm2.65da 662 | 
. . . . . 6
 | 
| 28 | 27 | olcd 735 | 
. . . . 5
 | 
| 29 | 8 | ad2antrr 488 | 
. . . . . . . . . . 11
 | 
| 30 | snssi 3766 | 
. . . . . . . . . . . . . 14
 | |
| 31 | ssequn2 3336 | 
. . . . . . . . . . . . . 14
 | |
| 32 | 30, 31 | sylib 122 | 
. . . . . . . . . . . . 13
 | 
| 33 | 32 | breq1d 4043 | 
. . . . . . . . . . . 12
 | 
| 34 | 33 | adantl 277 | 
. . . . . . . . . . 11
 | 
| 35 | 29, 34 | mpbid 147 | 
. . . . . . . . . 10
 | 
| 36 | 35 | ensymd 6842 | 
. . . . . . . . 9
 | 
| 37 | 10 | ad3antrrr 492 | 
. . . . . . . . 9
 | 
| 38 | entr 6843 | 
. . . . . . . . 9
 | |
| 39 | 36, 37, 38 | syl2anc 411 | 
. . . . . . . 8
 | 
| 40 | simprl 529 | 
. . . . . . . . . 10
 | |
| 41 | 40 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 42 | simprl 529 | 
. . . . . . . . . 10
 | |
| 43 | 42 | ad3antrrr 492 | 
. . . . . . . . 9
 | 
| 44 | nneneq 6918 | 
. . . . . . . . 9
 | |
| 45 | 41, 43, 44 | syl2anc 411 | 
. . . . . . . 8
 | 
| 46 | 39, 45 | mpbid 147 | 
. . . . . . 7
 | 
| 47 | simplr 528 | 
. . . . . . 7
 | |
| 48 | 46, 47 | pm2.65da 662 | 
. . . . . 6
 | 
| 49 | 48 | orcd 734 | 
. . . . 5
 | 
| 50 | 42 | adantr 276 | 
. . . . . . 7
 | 
| 51 | nndceq 6557 | 
. . . . . . 7
 | |
| 52 | 40, 50, 51 | syl2anc 411 | 
. . . . . 6
 | 
| 53 | exmiddc 837 | 
. . . . . 6
 | |
| 54 | 52, 53 | syl 14 | 
. . . . 5
 | 
| 55 | 28, 49, 54 | mpjaodan 799 | 
. . . 4
 | 
| 56 | 7, 55 | rexlimddv 2619 | 
. . 3
 | 
| 57 | 3, 56 | rexlimddv 2619 | 
. 2
 | 
| 58 | df-dc 836 | 
. 2
 | |
| 59 | 57, 58 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1o 6474 df-er 6592 df-en 6800 df-fin 6802 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |