| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unsnfidcel | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| unsnfidcel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6902 |
. . . . 5
| |
| 2 | 1 | biimpi 120 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1042 |
. . 3
|
| 4 | isfi 6902 |
. . . . . . 7
| |
| 5 | 4 | biimpi 120 |
. . . . . 6
|
| 6 | 5 | 3ad2ant3 1044 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | simprr 531 |
. . . . . . . . . 10
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . . . 9
|
| 10 | simprr 531 |
. . . . . . . . . . . 12
| |
| 11 | 10 | ad3antrrr 492 |
. . . . . . . . . . 11
|
| 12 | simplr 528 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | breqtrrd 4110 |
. . . . . . . . . 10
|
| 14 | 13 | ensymd 6925 |
. . . . . . . . 9
|
| 15 | entr 6926 |
. . . . . . . . 9
| |
| 16 | 9, 14, 15 | syl2anc 411 |
. . . . . . . 8
|
| 17 | 16 | ensymd 6925 |
. . . . . . 7
|
| 18 | simp1 1021 |
. . . . . . . . 9
| |
| 19 | 18 | ad4antr 494 |
. . . . . . . 8
|
| 20 | simpl2 1025 |
. . . . . . . . . . 11
| |
| 21 | 20 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 22 | 21 | elexd 2813 |
. . . . . . . . 9
|
| 23 | simpr 110 |
. . . . . . . . 9
| |
| 24 | 22, 23 | eldifd 3207 |
. . . . . . . 8
|
| 25 | php5fin 7032 |
. . . . . . . 8
| |
| 26 | 19, 24, 25 | syl2anc 411 |
. . . . . . 7
|
| 27 | 17, 26 | pm2.65da 665 |
. . . . . 6
|
| 28 | 27 | olcd 739 |
. . . . 5
|
| 29 | 8 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 30 | snssi 3811 |
. . . . . . . . . . . . . 14
| |
| 31 | ssequn2 3377 |
. . . . . . . . . . . . . 14
| |
| 32 | 30, 31 | sylib 122 |
. . . . . . . . . . . . 13
|
| 33 | 32 | breq1d 4092 |
. . . . . . . . . . . 12
|
| 34 | 33 | adantl 277 |
. . . . . . . . . . 11
|
| 35 | 29, 34 | mpbid 147 |
. . . . . . . . . 10
|
| 36 | 35 | ensymd 6925 |
. . . . . . . . 9
|
| 37 | 10 | ad3antrrr 492 |
. . . . . . . . 9
|
| 38 | entr 6926 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . . 8
|
| 40 | simprl 529 |
. . . . . . . . . 10
| |
| 41 | 40 | ad2antrr 488 |
. . . . . . . . 9
|
| 42 | simprl 529 |
. . . . . . . . . 10
| |
| 43 | 42 | ad3antrrr 492 |
. . . . . . . . 9
|
| 44 | nneneq 7006 |
. . . . . . . . 9
| |
| 45 | 41, 43, 44 | syl2anc 411 |
. . . . . . . 8
|
| 46 | 39, 45 | mpbid 147 |
. . . . . . 7
|
| 47 | simplr 528 |
. . . . . . 7
| |
| 48 | 46, 47 | pm2.65da 665 |
. . . . . 6
|
| 49 | 48 | orcd 738 |
. . . . 5
|
| 50 | 42 | adantr 276 |
. . . . . . 7
|
| 51 | nndceq 6635 |
. . . . . . 7
| |
| 52 | 40, 50, 51 | syl2anc 411 |
. . . . . 6
|
| 53 | exmiddc 841 |
. . . . . 6
| |
| 54 | 52, 53 | syl 14 |
. . . . 5
|
| 55 | 28, 49, 54 | mpjaodan 803 |
. . . 4
|
| 56 | 7, 55 | rexlimddv 2653 |
. . 3
|
| 57 | 3, 56 | rexlimddv 2653 |
. 2
|
| 58 | df-dc 840 |
. 2
| |
| 59 | 57, 58 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-1o 6552 df-er 6670 df-en 6878 df-fin 6880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |