ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspun0 Unicode version

Theorem lspun0 13924
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.)
Hypotheses
Ref Expression
lspun0.v  |-  V  =  ( Base `  W
)
lspun0.o  |-  .0.  =  ( 0g `  W )
lspun0.n  |-  N  =  ( LSpan `  W )
lspun0.w  |-  ( ph  ->  W  e.  LMod )
lspun0.x  |-  ( ph  ->  X  C_  V )
Assertion
Ref Expression
lspun0  |-  ( ph  ->  ( N `  ( X  u.  {  .0.  } ) )  =  ( N `  X ) )

Proof of Theorem lspun0
StepHypRef Expression
1 lspun0.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lspun0.x . . 3  |-  ( ph  ->  X  C_  V )
3 lspun0.v . . . . . 6  |-  V  =  ( Base `  W
)
4 lspun0.o . . . . . 6  |-  .0.  =  ( 0g `  W )
53, 4lmod0vcl 13816 . . . . 5  |-  ( W  e.  LMod  ->  .0.  e.  V )
61, 5syl 14 . . . 4  |-  ( ph  ->  .0.  e.  V )
76snssd 3764 . . 3  |-  ( ph  ->  {  .0.  }  C_  V )
8 lspun0.n . . . 4  |-  N  =  ( LSpan `  W )
93, 8lspun 13901 . . 3  |-  ( ( W  e.  LMod  /\  X  C_  V  /\  {  .0.  } 
C_  V )  -> 
( N `  ( X  u.  {  .0.  } ) )  =  ( N `  ( ( N `  X )  u.  ( N `  {  .0.  } ) ) ) )
101, 2, 7, 9syl3anc 1249 . 2  |-  ( ph  ->  ( N `  ( X  u.  {  .0.  } ) )  =  ( N `  ( ( N `  X )  u.  ( N `  {  .0.  } ) ) ) )
114, 8lspsn0 13921 . . . . . . 7  |-  ( W  e.  LMod  ->  ( N `
 {  .0.  }
)  =  {  .0.  } )
121, 11syl 14 . . . . . 6  |-  ( ph  ->  ( N `  {  .0.  } )  =  {  .0.  } )
1312uneq2d 3314 . . . . 5  |-  ( ph  ->  ( ( N `  X )  u.  ( N `  {  .0.  }
) )  =  ( ( N `  X
)  u.  {  .0.  } ) )
14 eqid 2193 . . . . . . . . 9  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
153, 14, 8lspcl 13890 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  C_  V )  ->  ( N `  X )  e.  ( LSubSp `  W )
)
161, 2, 15syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( N `  X
)  e.  ( LSubSp `  W ) )
174, 14lss0ss 13870 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( N `  X )  e.  ( LSubSp `  W )
)  ->  {  .0.  } 
C_  ( N `  X ) )
181, 16, 17syl2anc 411 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  ( N `  X ) )
19 ssequn2 3333 . . . . . 6  |-  ( {  .0.  }  C_  ( N `  X )  <->  ( ( N `  X
)  u.  {  .0.  } )  =  ( N `
 X ) )
2018, 19sylib 122 . . . . 5  |-  ( ph  ->  ( ( N `  X )  u.  {  .0.  } )  =  ( N `  X ) )
2113, 20eqtrd 2226 . . . 4  |-  ( ph  ->  ( ( N `  X )  u.  ( N `  {  .0.  }
) )  =  ( N `  X ) )
2221fveq2d 5559 . . 3  |-  ( ph  ->  ( N `  (
( N `  X
)  u.  ( N `
 {  .0.  }
) ) )  =  ( N `  ( N `  X )
) )
233, 8lspidm 13900 . . . 4  |-  ( ( W  e.  LMod  /\  X  C_  V )  ->  ( N `  ( N `  X ) )  =  ( N `  X
) )
241, 2, 23syl2anc 411 . . 3  |-  ( ph  ->  ( N `  ( N `  X )
)  =  ( N `
 X ) )
2522, 24eqtrd 2226 . 2  |-  ( ph  ->  ( N `  (
( N `  X
)  u.  ( N `
 {  .0.  }
) ) )  =  ( N `  X
) )
2610, 25eqtrd 2226 1  |-  ( ph  ->  ( N `  ( X  u.  {  .0.  } ) )  =  ( N `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    u. cun 3152    C_ wss 3154   {csn 3619   ` cfv 5255   Basecbs 12621   0gc0g 12870   LModclmod 13786   LSubSpclss 13851   LSpanclspn 13885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-mgp 13420  df-ur 13459  df-ring 13497  df-lmod 13788  df-lssm 13852  df-lsp 13886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator