ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspun0 Unicode version

Theorem lspun0 14129
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.)
Hypotheses
Ref Expression
lspun0.v  |-  V  =  ( Base `  W
)
lspun0.o  |-  .0.  =  ( 0g `  W )
lspun0.n  |-  N  =  ( LSpan `  W )
lspun0.w  |-  ( ph  ->  W  e.  LMod )
lspun0.x  |-  ( ph  ->  X  C_  V )
Assertion
Ref Expression
lspun0  |-  ( ph  ->  ( N `  ( X  u.  {  .0.  } ) )  =  ( N `  X ) )

Proof of Theorem lspun0
StepHypRef Expression
1 lspun0.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lspun0.x . . 3  |-  ( ph  ->  X  C_  V )
3 lspun0.v . . . . . 6  |-  V  =  ( Base `  W
)
4 lspun0.o . . . . . 6  |-  .0.  =  ( 0g `  W )
53, 4lmod0vcl 14021 . . . . 5  |-  ( W  e.  LMod  ->  .0.  e.  V )
61, 5syl 14 . . . 4  |-  ( ph  ->  .0.  e.  V )
76snssd 3777 . . 3  |-  ( ph  ->  {  .0.  }  C_  V )
8 lspun0.n . . . 4  |-  N  =  ( LSpan `  W )
93, 8lspun 14106 . . 3  |-  ( ( W  e.  LMod  /\  X  C_  V  /\  {  .0.  } 
C_  V )  -> 
( N `  ( X  u.  {  .0.  } ) )  =  ( N `  ( ( N `  X )  u.  ( N `  {  .0.  } ) ) ) )
101, 2, 7, 9syl3anc 1249 . 2  |-  ( ph  ->  ( N `  ( X  u.  {  .0.  } ) )  =  ( N `  ( ( N `  X )  u.  ( N `  {  .0.  } ) ) ) )
114, 8lspsn0 14126 . . . . . . 7  |-  ( W  e.  LMod  ->  ( N `
 {  .0.  }
)  =  {  .0.  } )
121, 11syl 14 . . . . . 6  |-  ( ph  ->  ( N `  {  .0.  } )  =  {  .0.  } )
1312uneq2d 3326 . . . . 5  |-  ( ph  ->  ( ( N `  X )  u.  ( N `  {  .0.  }
) )  =  ( ( N `  X
)  u.  {  .0.  } ) )
14 eqid 2204 . . . . . . . . 9  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
153, 14, 8lspcl 14095 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  X  C_  V )  ->  ( N `  X )  e.  ( LSubSp `  W )
)
161, 2, 15syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( N `  X
)  e.  ( LSubSp `  W ) )
174, 14lss0ss 14075 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( N `  X )  e.  ( LSubSp `  W )
)  ->  {  .0.  } 
C_  ( N `  X ) )
181, 16, 17syl2anc 411 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  ( N `  X ) )
19 ssequn2 3345 . . . . . 6  |-  ( {  .0.  }  C_  ( N `  X )  <->  ( ( N `  X
)  u.  {  .0.  } )  =  ( N `
 X ) )
2018, 19sylib 122 . . . . 5  |-  ( ph  ->  ( ( N `  X )  u.  {  .0.  } )  =  ( N `  X ) )
2113, 20eqtrd 2237 . . . 4  |-  ( ph  ->  ( ( N `  X )  u.  ( N `  {  .0.  }
) )  =  ( N `  X ) )
2221fveq2d 5579 . . 3  |-  ( ph  ->  ( N `  (
( N `  X
)  u.  ( N `
 {  .0.  }
) ) )  =  ( N `  ( N `  X )
) )
233, 8lspidm 14105 . . . 4  |-  ( ( W  e.  LMod  /\  X  C_  V )  ->  ( N `  ( N `  X ) )  =  ( N `  X
) )
241, 2, 23syl2anc 411 . . 3  |-  ( ph  ->  ( N `  ( N `  X )
)  =  ( N `
 X ) )
2522, 24eqtrd 2237 . 2  |-  ( ph  ->  ( N `  (
( N `  X
)  u.  ( N `
 {  .0.  }
) ) )  =  ( N `  X
) )
2610, 25eqtrd 2237 1  |-  ( ph  ->  ( N `  ( X  u.  {  .0.  } ) )  =  ( N `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175    u. cun 3163    C_ wss 3165   {csn 3632   ` cfv 5270   Basecbs 12774   0gc0g 13030   LModclmod 13991   LSubSpclss 14056   LSpanclspn 14090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-sbg 13279  df-mgp 13625  df-ur 13664  df-ring 13702  df-lmod 13993  df-lssm 14057  df-lsp 14091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator