Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elcncf | Unicode version |
Description: Membership in the set of continuous complex functions from to . (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.) |
Ref | Expression |
---|---|
elcncf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfval 13209 | . . . 4 | |
2 | 1 | eleq2d 2236 | . . 3 |
3 | fveq1 5485 | . . . . . . . . . 10 | |
4 | fveq1 5485 | . . . . . . . . . 10 | |
5 | 3, 4 | oveq12d 5860 | . . . . . . . . 9 |
6 | 5 | fveq2d 5490 | . . . . . . . 8 |
7 | 6 | breq1d 3992 | . . . . . . 7 |
8 | 7 | imbi2d 229 | . . . . . 6 |
9 | 8 | rexralbidv 2492 | . . . . 5 |
10 | 9 | 2ralbidv 2490 | . . . 4 |
11 | 10 | elrab 2882 | . . 3 |
12 | 2, 11 | bitrdi 195 | . 2 |
13 | cnex 7877 | . . . . 5 | |
14 | 13 | ssex 4119 | . . . 4 |
15 | 13 | ssex 4119 | . . . 4 |
16 | elmapg 6627 | . . . 4 | |
17 | 14, 15, 16 | syl2anr 288 | . . 3 |
18 | 17 | anbi1d 461 | . 2 |
19 | 12, 18 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 crab 2448 cvv 2726 wss 3116 class class class wbr 3982 wf 5184 cfv 5188 (class class class)co 5842 cmap 6614 cc 7751 clt 7933 cmin 8069 crp 9589 cabs 10939 ccncf 13207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 df-cncf 13208 |
This theorem is referenced by: elcncf2 13211 cncff 13214 elcncf1di 13216 rescncf 13218 cncfmet 13229 |
Copyright terms: Public domain | W3C validator |