ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf Unicode version

Theorem elcncf 12739
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
elcncf  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cncfval 12738 . . . 4  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21eleq2d 2209 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  F  e.  { f  e.  ( B  ^m  A )  | 
A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } ) )
3 fveq1 5420 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4 fveq1 5420 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  w )  =  ( F `  w ) )
53, 4oveq12d 5792 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  x
)  -  ( f `
 w ) )  =  ( ( F `
 x )  -  ( F `  w ) ) )
65fveq2d 5425 . . . . . . . 8  |-  ( f  =  F  ->  ( abs `  ( ( f `
 x )  -  ( f `  w
) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
76breq1d 3939 . . . . . . 7  |-  ( f  =  F  ->  (
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
87imbi2d 229 . . . . . 6  |-  ( f  =  F  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98rexralbidv 2461 . . . . 5  |-  ( f  =  F  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1092ralbidv 2459 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1110elrab 2840 . . 3  |-  ( F  e.  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
122, 11syl6bb 195 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
13 cnex 7751 . . . . 5  |-  CC  e.  _V
1413ssex 4065 . . . 4  |-  ( B 
C_  CC  ->  B  e. 
_V )
1513ssex 4065 . . . 4  |-  ( A 
C_  CC  ->  A  e. 
_V )
16 elmapg 6555 . . . 4  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( F  e.  ( B  ^m  A )  <-> 
F : A --> B ) )
1714, 15, 16syl2anr 288 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( B  ^m  A )  <->  F : A
--> B ) )
1817anbi1d 460 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F  e.  ( B  ^m  A )  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
1912, 18bitrd 187 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^m cmap 6542   CCcc 7625    < clt 7807    - cmin 7940   RR+crp 9448   abscabs 10776   -cn->ccncf 12736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-map 6544  df-cncf 12737
This theorem is referenced by:  elcncf2  12740  cncff  12743  elcncf1di  12745  rescncf  12747  cncfmet  12758
  Copyright terms: Public domain W3C validator