ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf Unicode version

Theorem elcncf 15045
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
elcncf  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Distinct variable groups:    x, w, y, z, A    w, F, x, y, z    w, B, x, y, z

Proof of Theorem elcncf
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cncfval 15044 . . . 4  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
21eleq2d 2275 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  F  e.  { f  e.  ( B  ^m  A )  | 
A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } ) )
3 fveq1 5575 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4 fveq1 5575 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  w )  =  ( F `  w ) )
53, 4oveq12d 5962 . . . . . . . . 9  |-  ( f  =  F  ->  (
( f `  x
)  -  ( f `
 w ) )  =  ( ( F `
 x )  -  ( F `  w ) ) )
65fveq2d 5580 . . . . . . . 8  |-  ( f  =  F  ->  ( abs `  ( ( f `
 x )  -  ( f `  w
) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
76breq1d 4054 . . . . . . 7  |-  ( f  =  F  ->  (
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
87imbi2d 230 . . . . . 6  |-  ( f  =  F  ->  (
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98rexralbidv 2532 . . . . 5  |-  ( f  =  F  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1092ralbidv 2530 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
1110elrab 2929 . . 3  |-  ( F  e.  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
122, 11bitrdi 196 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F  e.  ( B  ^m  A
)  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
13 cnex 8049 . . . . 5  |-  CC  e.  _V
1413ssex 4181 . . . 4  |-  ( B 
C_  CC  ->  B  e. 
_V )
1513ssex 4181 . . . 4  |-  ( A 
C_  CC  ->  A  e. 
_V )
16 elmapg 6748 . . . 4  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( F  e.  ( B  ^m  A )  <-> 
F : A --> B ) )
1714, 15, 16syl2anr 290 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( B  ^m  A )  <->  F : A
--> B ) )
1817anbi1d 465 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( F  e.  ( B  ^m  A )  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
1912, 18bitrd 188 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488   _Vcvv 2772    C_ wss 3166   class class class wbr 4044   -->wf 5267   ` cfv 5271  (class class class)co 5944    ^m cmap 6735   CCcc 7923    < clt 8107    - cmin 8243   RR+crp 9775   abscabs 11308   -cn->ccncf 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737  df-cncf 15043
This theorem is referenced by:  elcncf2  15046  cncff  15049  elcncf1di  15051  rescncf  15053  cncfmet  15064
  Copyright terms: Public domain W3C validator