ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc Unicode version

Theorem nninfdc 12610
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Distinct variable groups:    A, m, n   
x, A

Proof of Theorem nninfdc
Dummy variables  a  b  f  i  y  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10505 . . 3  |-  NN  ~~  om
21ensymi 6836 . 2  |-  om  ~~  NN
3 breq1 4032 . . . . . . 7  |-  ( m  =  1  ->  (
m  <  n  <->  1  <  n ) )
43rexbidv 2495 . . . . . 6  |-  ( m  =  1  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  1  <  n ) )
5 simp3 1001 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
6 1nn 8993 . . . . . . 7  |-  1  e.  NN
76a1i 9 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
1  e.  NN )
84, 5, 7rspcdva 2869 . . . . 5  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. n  e.  A 
1  <  n )
9 breq2 4033 . . . . . 6  |-  ( n  =  j  ->  (
1  <  n  <->  1  <  j ) )
109cbvrexv 2727 . . . . 5  |-  ( E. n  e.  A  1  <  n  <->  E. j  e.  A  1  <  j )
118, 10sylib 122 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. j  e.  A 
1  <  j )
12 simpl1 1002 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A  C_  NN )
13 simpl2 1003 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. x  e.  NN DECID  x  e.  A )
14 simpl3 1004 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
15 simpr 110 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  -> 
( j  e.  A  /\  1  <  j ) )
16 fvoveq1 5941 . . . . . . . . . 10  |-  ( a  =  y  ->  ( ZZ>=
`  ( a  +  1 ) )  =  ( ZZ>= `  ( y  +  1 ) ) )
1716ineq2d 3360 . . . . . . . . 9  |-  ( a  =  y  ->  ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) )
1817infeq1d 7071 . . . . . . . 8  |-  ( a  =  y  -> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
19 eqidd 2194 . . . . . . . 8  |-  ( b  =  z  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
2018, 19cbvmpov 5998 . . . . . . 7  |-  ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
21 seqeq2 10522 . . . . . . 7  |-  ( ( a  e.  NN , 
b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( a  +  1 ) ) ) ,  RR ,  <  ) )  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  ->  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) ) )
2220, 21ax-mp 5 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )
2312, 13, 14, 15, 22nninfdclemf1 12609 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
)
24 seqex 10520 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  e. 
_V
25 f1eq1 5454 . . . . . 6  |-  ( f  =  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  ->  (
f : NN -1-1-> A  <->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
) )
2624, 25spcev 2855 . . . . 5  |-  (  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A  ->  E. f  f : NN -1-1-> A )
2723, 26syl 14 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  E. f  f : NN
-1-1-> A )
2811, 27rexlimddv 2616 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. f  f : NN
-1-1-> A )
29 nnex 8988 . . . . . 6  |-  NN  e.  _V
3029ssex 4166 . . . . 5  |-  ( A 
C_  NN  ->  A  e. 
_V )
31303ad2ant1 1020 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  e.  _V )
32 brdomg 6802 . . . 4  |-  ( A  e.  _V  ->  ( NN 
~<_  A  <->  E. f  f : NN -1-1-> A ) )
3331, 32syl 14 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
( NN  ~<_  A  <->  E. f 
f : NN -1-1-> A
) )
3428, 33mpbird 167 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  NN 
~<_  A )
35 endomtr 6844 . 2  |-  ( ( om  ~~  NN  /\  NN 
~<_  A )  ->  om  ~<_  A )
362, 34, 35sylancr 414 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760    i^i cin 3152    C_ wss 3153   class class class wbr 4029    |-> cmpt 4090   omcom 4622   -1-1->wf1 5251   ` cfv 5254  (class class class)co 5918    e. cmpo 5920    ~~ cen 6792    ~<_ cdom 6793  infcinf 7042   RRcr 7871   1c1 7873    + caddc 7875    < clt 8054   NNcn 8982   ZZ>=cuz 9592    seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-er 6587  df-en 6795  df-dom 6796  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519
This theorem is referenced by:  unbendc  12611
  Copyright terms: Public domain W3C validator