ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc Unicode version

Theorem nninfdc 12507
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Distinct variable groups:    A, m, n   
x, A

Proof of Theorem nninfdc
Dummy variables  a  b  f  i  y  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10467 . . 3  |-  NN  ~~  om
21ensymi 6809 . 2  |-  om  ~~  NN
3 breq1 4021 . . . . . . 7  |-  ( m  =  1  ->  (
m  <  n  <->  1  <  n ) )
43rexbidv 2491 . . . . . 6  |-  ( m  =  1  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  1  <  n ) )
5 simp3 1001 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
6 1nn 8961 . . . . . . 7  |-  1  e.  NN
76a1i 9 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
1  e.  NN )
84, 5, 7rspcdva 2861 . . . . 5  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. n  e.  A 
1  <  n )
9 breq2 4022 . . . . . 6  |-  ( n  =  j  ->  (
1  <  n  <->  1  <  j ) )
109cbvrexv 2719 . . . . 5  |-  ( E. n  e.  A  1  <  n  <->  E. j  e.  A  1  <  j )
118, 10sylib 122 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. j  e.  A 
1  <  j )
12 simpl1 1002 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A  C_  NN )
13 simpl2 1003 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. x  e.  NN DECID  x  e.  A )
14 simpl3 1004 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
15 simpr 110 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  -> 
( j  e.  A  /\  1  <  j ) )
16 fvoveq1 5920 . . . . . . . . . 10  |-  ( a  =  y  ->  ( ZZ>=
`  ( a  +  1 ) )  =  ( ZZ>= `  ( y  +  1 ) ) )
1716ineq2d 3351 . . . . . . . . 9  |-  ( a  =  y  ->  ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) )
1817infeq1d 7042 . . . . . . . 8  |-  ( a  =  y  -> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
19 eqidd 2190 . . . . . . . 8  |-  ( b  =  z  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
2018, 19cbvmpov 5977 . . . . . . 7  |-  ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
21 seqeq2 10482 . . . . . . 7  |-  ( ( a  e.  NN , 
b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( a  +  1 ) ) ) ,  RR ,  <  ) )  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  ->  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) ) )
2220, 21ax-mp 5 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )
2312, 13, 14, 15, 22nninfdclemf1 12506 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
)
24 seqex 10480 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  e. 
_V
25 f1eq1 5435 . . . . . 6  |-  ( f  =  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  ->  (
f : NN -1-1-> A  <->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
) )
2624, 25spcev 2847 . . . . 5  |-  (  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A  ->  E. f  f : NN -1-1-> A )
2723, 26syl 14 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  E. f  f : NN
-1-1-> A )
2811, 27rexlimddv 2612 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. f  f : NN
-1-1-> A )
29 nnex 8956 . . . . . 6  |-  NN  e.  _V
3029ssex 4155 . . . . 5  |-  ( A 
C_  NN  ->  A  e. 
_V )
31303ad2ant1 1020 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  e.  _V )
32 brdomg 6775 . . . 4  |-  ( A  e.  _V  ->  ( NN 
~<_  A  <->  E. f  f : NN -1-1-> A ) )
3331, 32syl 14 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
( NN  ~<_  A  <->  E. f 
f : NN -1-1-> A
) )
3428, 33mpbird 167 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  NN 
~<_  A )
35 endomtr 6817 . 2  |-  ( ( om  ~~  NN  /\  NN 
~<_  A )  ->  om  ~<_  A )
362, 34, 35sylancr 414 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   E.wrex 2469   _Vcvv 2752    i^i cin 3143    C_ wss 3144   class class class wbr 4018    |-> cmpt 4079   omcom 4607   -1-1->wf1 5232   ` cfv 5235  (class class class)co 5897    e. cmpo 5899    ~~ cen 6765    ~<_ cdom 6766  infcinf 7013   RRcr 7841   1c1 7843    + caddc 7845    < clt 8023   NNcn 8950   ZZ>=cuz 9559    seqcseq 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-er 6560  df-en 6768  df-dom 6769  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285  df-uz 9560  df-fz 10041  df-fzo 10175  df-seqfrec 10479
This theorem is referenced by:  unbendc  12508
  Copyright terms: Public domain W3C validator