ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc Unicode version

Theorem nninfdc 12939
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Distinct variable groups:    A, m, n   
x, A

Proof of Theorem nninfdc
Dummy variables  a  b  f  i  y  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10616 . . 3  |-  NN  ~~  om
21ensymi 6897 . 2  |-  om  ~~  NN
3 breq1 4062 . . . . . . 7  |-  ( m  =  1  ->  (
m  <  n  <->  1  <  n ) )
43rexbidv 2509 . . . . . 6  |-  ( m  =  1  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  1  <  n ) )
5 simp3 1002 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
6 1nn 9082 . . . . . . 7  |-  1  e.  NN
76a1i 9 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
1  e.  NN )
84, 5, 7rspcdva 2889 . . . . 5  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. n  e.  A 
1  <  n )
9 breq2 4063 . . . . . 6  |-  ( n  =  j  ->  (
1  <  n  <->  1  <  j ) )
109cbvrexv 2743 . . . . 5  |-  ( E. n  e.  A  1  <  n  <->  E. j  e.  A  1  <  j )
118, 10sylib 122 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. j  e.  A 
1  <  j )
12 simpl1 1003 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A  C_  NN )
13 simpl2 1004 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. x  e.  NN DECID  x  e.  A )
14 simpl3 1005 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
15 simpr 110 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  -> 
( j  e.  A  /\  1  <  j ) )
16 fvoveq1 5990 . . . . . . . . . 10  |-  ( a  =  y  ->  ( ZZ>=
`  ( a  +  1 ) )  =  ( ZZ>= `  ( y  +  1 ) ) )
1716ineq2d 3382 . . . . . . . . 9  |-  ( a  =  y  ->  ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) )
1817infeq1d 7140 . . . . . . . 8  |-  ( a  =  y  -> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
19 eqidd 2208 . . . . . . . 8  |-  ( b  =  z  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
2018, 19cbvmpov 6048 . . . . . . 7  |-  ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
21 seqeq2 10633 . . . . . . 7  |-  ( ( a  e.  NN , 
b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( a  +  1 ) ) ) ,  RR ,  <  ) )  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  ->  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) ) )
2220, 21ax-mp 5 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )
2312, 13, 14, 15, 22nninfdclemf1 12938 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
)
24 seqex 10631 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  e. 
_V
25 f1eq1 5498 . . . . . 6  |-  ( f  =  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  ->  (
f : NN -1-1-> A  <->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
) )
2624, 25spcev 2875 . . . . 5  |-  (  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A  ->  E. f  f : NN -1-1-> A )
2723, 26syl 14 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  E. f  f : NN
-1-1-> A )
2811, 27rexlimddv 2630 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. f  f : NN
-1-1-> A )
29 nnex 9077 . . . . . 6  |-  NN  e.  _V
3029ssex 4197 . . . . 5  |-  ( A 
C_  NN  ->  A  e. 
_V )
31303ad2ant1 1021 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  e.  _V )
32 brdomg 6860 . . . 4  |-  ( A  e.  _V  ->  ( NN 
~<_  A  <->  E. f  f : NN -1-1-> A ) )
3331, 32syl 14 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
( NN  ~<_  A  <->  E. f 
f : NN -1-1-> A
) )
3428, 33mpbird 167 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  NN 
~<_  A )
35 endomtr 6905 . 2  |-  ( ( om  ~~  NN  /\  NN 
~<_  A )  ->  om  ~<_  A )
362, 34, 35sylancr 414 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776    i^i cin 3173    C_ wss 3174   class class class wbr 4059    |-> cmpt 4121   omcom 4656   -1-1->wf1 5287   ` cfv 5290  (class class class)co 5967    e. cmpo 5969    ~~ cen 6848    ~<_ cdom 6849  infcinf 7111   RRcr 7959   1c1 7961    + caddc 7963    < clt 8142   NNcn 9071   ZZ>=cuz 9683    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-er 6643  df-en 6851  df-dom 6852  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-seqfrec 10630
This theorem is referenced by:  unbendc  12940
  Copyright terms: Public domain W3C validator