ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc Unicode version

Theorem nninfdc 12613
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Distinct variable groups:    A, m, n   
x, A

Proof of Theorem nninfdc
Dummy variables  a  b  f  i  y  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10508 . . 3  |-  NN  ~~  om
21ensymi 6838 . 2  |-  om  ~~  NN
3 breq1 4033 . . . . . . 7  |-  ( m  =  1  ->  (
m  <  n  <->  1  <  n ) )
43rexbidv 2495 . . . . . 6  |-  ( m  =  1  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  1  <  n ) )
5 simp3 1001 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
6 1nn 8995 . . . . . . 7  |-  1  e.  NN
76a1i 9 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
1  e.  NN )
84, 5, 7rspcdva 2870 . . . . 5  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. n  e.  A 
1  <  n )
9 breq2 4034 . . . . . 6  |-  ( n  =  j  ->  (
1  <  n  <->  1  <  j ) )
109cbvrexv 2727 . . . . 5  |-  ( E. n  e.  A  1  <  n  <->  E. j  e.  A  1  <  j )
118, 10sylib 122 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. j  e.  A 
1  <  j )
12 simpl1 1002 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A  C_  NN )
13 simpl2 1003 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. x  e.  NN DECID  x  e.  A )
14 simpl3 1004 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
15 simpr 110 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  -> 
( j  e.  A  /\  1  <  j ) )
16 fvoveq1 5942 . . . . . . . . . 10  |-  ( a  =  y  ->  ( ZZ>=
`  ( a  +  1 ) )  =  ( ZZ>= `  ( y  +  1 ) ) )
1716ineq2d 3361 . . . . . . . . 9  |-  ( a  =  y  ->  ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) )
1817infeq1d 7073 . . . . . . . 8  |-  ( a  =  y  -> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
19 eqidd 2194 . . . . . . . 8  |-  ( b  =  z  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
2018, 19cbvmpov 5999 . . . . . . 7  |-  ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
21 seqeq2 10525 . . . . . . 7  |-  ( ( a  e.  NN , 
b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( a  +  1 ) ) ) ,  RR ,  <  ) )  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  ->  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) ) )
2220, 21ax-mp 5 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )
2312, 13, 14, 15, 22nninfdclemf1 12612 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
)
24 seqex 10523 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  e. 
_V
25 f1eq1 5455 . . . . . 6  |-  ( f  =  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  ->  (
f : NN -1-1-> A  <->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
) )
2624, 25spcev 2856 . . . . 5  |-  (  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A  ->  E. f  f : NN -1-1-> A )
2723, 26syl 14 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  E. f  f : NN
-1-1-> A )
2811, 27rexlimddv 2616 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. f  f : NN
-1-1-> A )
29 nnex 8990 . . . . . 6  |-  NN  e.  _V
3029ssex 4167 . . . . 5  |-  ( A 
C_  NN  ->  A  e. 
_V )
31303ad2ant1 1020 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  e.  _V )
32 brdomg 6804 . . . 4  |-  ( A  e.  _V  ->  ( NN 
~<_  A  <->  E. f  f : NN -1-1-> A ) )
3331, 32syl 14 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
( NN  ~<_  A  <->  E. f 
f : NN -1-1-> A
) )
3428, 33mpbird 167 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  NN 
~<_  A )
35 endomtr 6846 . 2  |-  ( ( om  ~~  NN  /\  NN 
~<_  A )  ->  om  ~<_  A )
362, 34, 35sylancr 414 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760    i^i cin 3153    C_ wss 3154   class class class wbr 4030    |-> cmpt 4091   omcom 4623   -1-1->wf1 5252   ` cfv 5255  (class class class)co 5919    e. cmpo 5921    ~~ cen 6794    ~<_ cdom 6795  infcinf 7044   RRcr 7873   1c1 7875    + caddc 7877    < clt 8056   NNcn 8984   ZZ>=cuz 9595    seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-er 6589  df-en 6797  df-dom 6798  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212  df-seqfrec 10522
This theorem is referenced by:  unbendc  12614
  Copyright terms: Public domain W3C validator