ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdc Unicode version

Theorem nninfdc 12695
Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
Assertion
Ref Expression
nninfdc  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Distinct variable groups:    A, m, n   
x, A

Proof of Theorem nninfdc
Dummy variables  a  b  f  i  y  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnenom 10543 . . 3  |-  NN  ~~  om
21ensymi 6850 . 2  |-  om  ~~  NN
3 breq1 4037 . . . . . . 7  |-  ( m  =  1  ->  (
m  <  n  <->  1  <  n ) )
43rexbidv 2498 . . . . . 6  |-  ( m  =  1  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  1  <  n ) )
5 simp3 1001 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
6 1nn 9018 . . . . . . 7  |-  1  e.  NN
76a1i 9 . . . . . 6  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
1  e.  NN )
84, 5, 7rspcdva 2873 . . . . 5  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. n  e.  A 
1  <  n )
9 breq2 4038 . . . . . 6  |-  ( n  =  j  ->  (
1  <  n  <->  1  <  j ) )
109cbvrexv 2730 . . . . 5  |-  ( E. n  e.  A  1  <  n  <->  E. j  e.  A  1  <  j )
118, 10sylib 122 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. j  e.  A 
1  <  j )
12 simpl1 1002 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A  C_  NN )
13 simpl2 1003 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. x  e.  NN DECID  x  e.  A )
14 simpl3 1004 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
15 simpr 110 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  -> 
( j  e.  A  /\  1  <  j ) )
16 fvoveq1 5948 . . . . . . . . . 10  |-  ( a  =  y  ->  ( ZZ>=
`  ( a  +  1 ) )  =  ( ZZ>= `  ( y  +  1 ) ) )
1716ineq2d 3365 . . . . . . . . 9  |-  ( a  =  y  ->  ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) )
1817infeq1d 7087 . . . . . . . 8  |-  ( a  =  y  -> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
19 eqidd 2197 . . . . . . . 8  |-  ( b  =  z  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) )
2018, 19cbvmpov 6006 . . . . . . 7  |-  ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
21 seqeq2 10560 . . . . . . 7  |-  ( ( a  e.  NN , 
b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( a  +  1 ) ) ) ,  RR ,  <  ) )  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  ->  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) ) )
2220, 21ax-mp 5 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )
2312, 13, 14, 15, 22nninfdclemf1 12694 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
)
24 seqex 10558 . . . . . 6  |-  seq 1
( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  e. 
_V
25 f1eq1 5461 . . . . . 6  |-  ( f  =  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  j ) )  ->  (
f : NN -1-1-> A  <->  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A
) )
2624, 25spcev 2859 . . . . 5  |-  (  seq 1 ( ( a  e.  NN ,  b  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( a  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  j ) ) : NN -1-1-> A  ->  E. f  f : NN -1-1-> A )
2723, 26syl 14 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( j  e.  A  /\  1  <  j ) )  ->  E. f  f : NN
-1-1-> A )
2811, 27rexlimddv 2619 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. f  f : NN
-1-1-> A )
29 nnex 9013 . . . . . 6  |-  NN  e.  _V
3029ssex 4171 . . . . 5  |-  ( A 
C_  NN  ->  A  e. 
_V )
31303ad2ant1 1020 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  e.  _V )
32 brdomg 6816 . . . 4  |-  ( A  e.  _V  ->  ( NN 
~<_  A  <->  E. f  f : NN -1-1-> A ) )
3331, 32syl 14 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
( NN  ~<_  A  <->  E. f 
f : NN -1-1-> A
) )
3428, 33mpbird 167 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  NN 
~<_  A )
35 endomtr 6858 . 2  |-  ( ( om  ~~  NN  /\  NN 
~<_  A )  ->  om  ~<_  A )
362, 34, 35sylancr 414 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763    i^i cin 3156    C_ wss 3157   class class class wbr 4034    |-> cmpt 4095   omcom 4627   -1-1->wf1 5256   ` cfv 5259  (class class class)co 5925    e. cmpo 5927    ~~ cen 6806    ~<_ cdom 6807  infcinf 7058   RRcr 7895   1c1 7897    + caddc 7899    < clt 8078   NNcn 9007   ZZ>=cuz 9618    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-er 6601  df-en 6809  df-dom 6810  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by:  unbendc  12696
  Copyright terms: Public domain W3C validator