| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdc | Unicode version | ||
| Description: An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnenom 10656 |
. . 3
| |
| 2 | 1 | ensymi 6934 |
. 2
|
| 3 | breq1 4086 |
. . . . . . 7
| |
| 4 | 3 | rexbidv 2531 |
. . . . . 6
|
| 5 | simp3 1023 |
. . . . . 6
| |
| 6 | 1nn 9121 |
. . . . . . 7
| |
| 7 | 6 | a1i 9 |
. . . . . 6
|
| 8 | 4, 5, 7 | rspcdva 2912 |
. . . . 5
|
| 9 | breq2 4087 |
. . . . . 6
| |
| 10 | 9 | cbvrexv 2766 |
. . . . 5
|
| 11 | 8, 10 | sylib 122 |
. . . 4
|
| 12 | simpl1 1024 |
. . . . . 6
| |
| 13 | simpl2 1025 |
. . . . . 6
| |
| 14 | simpl3 1026 |
. . . . . 6
| |
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | fvoveq1 6024 |
. . . . . . . . . 10
| |
| 17 | 16 | ineq2d 3405 |
. . . . . . . . 9
|
| 18 | 17 | infeq1d 7179 |
. . . . . . . 8
|
| 19 | eqidd 2230 |
. . . . . . . 8
| |
| 20 | 18, 19 | cbvmpov 6084 |
. . . . . . 7
|
| 21 | seqeq2 10673 |
. . . . . . 7
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . . 6
|
| 23 | 12, 13, 14, 15, 22 | nninfdclemf1 13023 |
. . . . 5
|
| 24 | seqex 10671 |
. . . . . 6
| |
| 25 | f1eq1 5526 |
. . . . . 6
| |
| 26 | 24, 25 | spcev 2898 |
. . . . 5
|
| 27 | 23, 26 | syl 14 |
. . . 4
|
| 28 | 11, 27 | rexlimddv 2653 |
. . 3
|
| 29 | nnex 9116 |
. . . . . 6
| |
| 30 | 29 | ssex 4221 |
. . . . 5
|
| 31 | 30 | 3ad2ant1 1042 |
. . . 4
|
| 32 | brdomg 6897 |
. . . 4
| |
| 33 | 31, 32 | syl 14 |
. . 3
|
| 34 | 28, 33 | mpbird 167 |
. 2
|
| 35 | endomtr 6942 |
. 2
| |
| 36 | 2, 34, 35 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-er 6680 df-en 6888 df-dom 6889 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 df-seqfrec 10670 |
| This theorem is referenced by: unbendc 13025 |
| Copyright terms: Public domain | W3C validator |