ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss Unicode version

Theorem tgss 12232
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
tgss  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)

Proof of Theorem tgss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssrin 3301 . . . . . 6  |-  ( B 
C_  C  ->  ( B  i^i  ~P x ) 
C_  ( C  i^i  ~P x ) )
21unissd 3760 . . . . 5  |-  ( B 
C_  C  ->  U. ( B  i^i  ~P x ) 
C_  U. ( C  i^i  ~P x ) )
3 sstr2 3104 . . . . 5  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  ( U. ( B  i^i  ~P x )  C_  U. ( C  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
42, 3syl5com 29 . . . 4  |-  ( B 
C_  C  ->  (
x  C_  U. ( B  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
54adantl 275 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  C_  U. ( B  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
6 ssexg 4067 . . . . 5  |-  ( ( B  C_  C  /\  C  e.  V )  ->  B  e.  _V )
76ancoms 266 . . . 4  |-  ( ( C  e.  V  /\  B  C_  C )  ->  B  e.  _V )
8 eltg 12221 . . . 4  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  x  C_  U. ( B  i^i  ~P x ) ) )
97, 8syl 14 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  B )  <->  x  C_  U. ( B  i^i  ~P x ) ) )
10 eltg 12221 . . . 4  |-  ( C  e.  V  ->  (
x  e.  ( topGen `  C )  <->  x  C_  U. ( C  i^i  ~P x ) ) )
1110adantr 274 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  C )  <->  x  C_  U. ( C  i^i  ~P x ) ) )
125, 9, 113imtr4d 202 . 2  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  B )  ->  x  e.  ( topGen `  C ) ) )
1312ssrdv 3103 1  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   _Vcvv 2686    i^i cin 3070    C_ wss 3071   ~Pcpw 3510   U.cuni 3736   ` cfv 5123   topGenctg 12135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-topgen 12141
This theorem is referenced by:  tgidm  12243  tgss3  12247  basgen  12249  2basgeng  12251  bastop1  12252  txss12  12435
  Copyright terms: Public domain W3C validator