ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss Unicode version

Theorem tgss 12703
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
tgss  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)

Proof of Theorem tgss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssrin 3347 . . . . . 6  |-  ( B 
C_  C  ->  ( B  i^i  ~P x ) 
C_  ( C  i^i  ~P x ) )
21unissd 3813 . . . . 5  |-  ( B 
C_  C  ->  U. ( B  i^i  ~P x ) 
C_  U. ( C  i^i  ~P x ) )
3 sstr2 3149 . . . . 5  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  ( U. ( B  i^i  ~P x )  C_  U. ( C  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
42, 3syl5com 29 . . . 4  |-  ( B 
C_  C  ->  (
x  C_  U. ( B  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
54adantl 275 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  C_  U. ( B  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
6 ssexg 4121 . . . . 5  |-  ( ( B  C_  C  /\  C  e.  V )  ->  B  e.  _V )
76ancoms 266 . . . 4  |-  ( ( C  e.  V  /\  B  C_  C )  ->  B  e.  _V )
8 eltg 12692 . . . 4  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  x  C_  U. ( B  i^i  ~P x ) ) )
97, 8syl 14 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  B )  <->  x  C_  U. ( B  i^i  ~P x ) ) )
10 eltg 12692 . . . 4  |-  ( C  e.  V  ->  (
x  e.  ( topGen `  C )  <->  x  C_  U. ( C  i^i  ~P x ) ) )
1110adantr 274 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  C )  <->  x  C_  U. ( C  i^i  ~P x ) ) )
125, 9, 113imtr4d 202 . 2  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  B )  ->  x  e.  ( topGen `  C ) ) )
1312ssrdv 3148 1  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   ` cfv 5188   topGenctg 12571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-topgen 12577
This theorem is referenced by:  tgidm  12714  tgss3  12718  basgen  12720  2basgeng  12722  bastop1  12723  txss12  12906
  Copyright terms: Public domain W3C validator