![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssrin | GIF version |
Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssrin | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3173 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 336 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | elin 3342 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | elin 3342 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
6 | 5 | ssrdv 3185 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∩ cin 3152 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 |
This theorem is referenced by: sslin 3385 ssrind 3386 ss2in 3387 ssdisj 3503 ssdifin0 3528 ssres 4968 phplem2 6909 sbthlem7 7022 fiss 7036 tgss 14231 metrest 14674 |
Copyright terms: Public domain | W3C validator |