ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiss Unicode version

Theorem fiss 6993
Description: Subset relationship for function  fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  C_  ( fi `  B ) )

Proof of Theorem fiss
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  C_  B )
2 sspwb 4230 . . . . 5  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
3 ssrin 3374 . . . . 5  |-  ( ~P A  C_  ~P B  ->  ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin ) )
42, 3sylbi 121 . . . 4  |-  ( A 
C_  B  ->  ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin ) )
5 ssrexv 3234 . . . 4  |-  ( ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin )  ->  ( E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x  ->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
61, 4, 53syl 17 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( E. x  e.  ( ~P A  i^i  Fin ) r  =  |^| x  ->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
7 vex 2754 . . . 4  |-  r  e. 
_V
8 simpl 109 . . . . 5  |-  ( ( B  e.  V  /\  A  C_  B )  ->  B  e.  V )
98, 1ssexd 4157 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  e.  _V )
10 elfi 6987 . . . 4  |-  ( ( r  e.  _V  /\  A  e.  _V )  ->  ( r  e.  ( fi `  A )  <->  E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x
) )
117, 9, 10sylancr 414 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  A )  <->  E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x
) )
12 elfi 6987 . . . . 5  |-  ( ( r  e.  _V  /\  B  e.  V )  ->  ( r  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin )
r  =  |^| x
) )
137, 12mpan 424 . . . 4  |-  ( B  e.  V  ->  (
r  e.  ( fi
`  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
1413adantr 276 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin )
r  =  |^| x
) )
156, 11, 143imtr4d 203 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  A )  ->  r  e.  ( fi `  B ) ) )
1615ssrdv 3175 1  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  C_  ( fi `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2159   E.wrex 2468   _Vcvv 2751    i^i cin 3142    C_ wss 3143   ~Pcpw 3589   |^|cint 3858   ` cfv 5230   Fincfn 6757   ficfi 6984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-iinf 4601
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-er 6552  df-en 6758  df-fin 6760  df-fi 6985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator