ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiss Unicode version

Theorem fiss 6951
Description: Subset relationship for function  fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  C_  ( fi `  B ) )

Proof of Theorem fiss
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  C_  B )
2 sspwb 4199 . . . . 5  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
3 ssrin 3352 . . . . 5  |-  ( ~P A  C_  ~P B  ->  ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin ) )
42, 3sylbi 120 . . . 4  |-  ( A 
C_  B  ->  ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin ) )
5 ssrexv 3212 . . . 4  |-  ( ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin )  ->  ( E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x  ->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
61, 4, 53syl 17 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( E. x  e.  ( ~P A  i^i  Fin ) r  =  |^| x  ->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
7 vex 2733 . . . 4  |-  r  e. 
_V
8 simpl 108 . . . . 5  |-  ( ( B  e.  V  /\  A  C_  B )  ->  B  e.  V )
98, 1ssexd 4127 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  e.  _V )
10 elfi 6945 . . . 4  |-  ( ( r  e.  _V  /\  A  e.  _V )  ->  ( r  e.  ( fi `  A )  <->  E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x
) )
117, 9, 10sylancr 412 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  A )  <->  E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x
) )
12 elfi 6945 . . . . 5  |-  ( ( r  e.  _V  /\  B  e.  V )  ->  ( r  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin )
r  =  |^| x
) )
137, 12mpan 422 . . . 4  |-  ( B  e.  V  ->  (
r  e.  ( fi
`  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
1413adantr 274 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin )
r  =  |^| x
) )
156, 11, 143imtr4d 202 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  A )  ->  r  e.  ( fi `  B ) ) )
1615ssrdv 3153 1  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  C_  ( fi `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   _Vcvv 2730    i^i cin 3120    C_ wss 3121   ~Pcpw 3564   |^|cint 3829   ` cfv 5196   Fincfn 6715   ficfi 6942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-er 6510  df-en 6716  df-fin 6718  df-fi 6943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator