ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiss Unicode version

Theorem fiss 6942
Description: Subset relationship for function  fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  C_  ( fi `  B ) )

Proof of Theorem fiss
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  C_  B )
2 sspwb 4194 . . . . 5  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
3 ssrin 3347 . . . . 5  |-  ( ~P A  C_  ~P B  ->  ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin ) )
42, 3sylbi 120 . . . 4  |-  ( A 
C_  B  ->  ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin ) )
5 ssrexv 3207 . . . 4  |-  ( ( ~P A  i^i  Fin )  C_  ( ~P B  i^i  Fin )  ->  ( E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x  ->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
61, 4, 53syl 17 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( E. x  e.  ( ~P A  i^i  Fin ) r  =  |^| x  ->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
7 vex 2729 . . . 4  |-  r  e. 
_V
8 simpl 108 . . . . 5  |-  ( ( B  e.  V  /\  A  C_  B )  ->  B  e.  V )
98, 1ssexd 4122 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  e.  _V )
10 elfi 6936 . . . 4  |-  ( ( r  e.  _V  /\  A  e.  _V )  ->  ( r  e.  ( fi `  A )  <->  E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x
) )
117, 9, 10sylancr 411 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  A )  <->  E. x  e.  ( ~P A  i^i  Fin )
r  =  |^| x
) )
12 elfi 6936 . . . . 5  |-  ( ( r  e.  _V  /\  B  e.  V )  ->  ( r  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin )
r  =  |^| x
) )
137, 12mpan 421 . . . 4  |-  ( B  e.  V  ->  (
r  e.  ( fi
`  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) r  =  |^| x ) )
1413adantr 274 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin )
r  =  |^| x
) )
156, 11, 143imtr4d 202 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( r  e.  ( fi `  A )  ->  r  e.  ( fi `  B ) ) )
1615ssrdv 3148 1  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  C_  ( fi `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ~Pcpw 3559   |^|cint 3824   ` cfv 5188   Fincfn 6706   ficfi 6933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709  df-fi 6934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator