Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiss | Unicode version |
Description: Subset relationship for function . (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fiss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . 4 | |
2 | sspwb 4199 | . . . . 5 | |
3 | ssrin 3352 | . . . . 5 | |
4 | 2, 3 | sylbi 120 | . . . 4 |
5 | ssrexv 3212 | . . . 4 | |
6 | 1, 4, 5 | 3syl 17 | . . 3 |
7 | vex 2733 | . . . 4 | |
8 | simpl 108 | . . . . 5 | |
9 | 8, 1 | ssexd 4127 | . . . 4 |
10 | elfi 6945 | . . . 4 | |
11 | 7, 9, 10 | sylancr 412 | . . 3 |
12 | elfi 6945 | . . . . 5 | |
13 | 7, 12 | mpan 422 | . . . 4 |
14 | 13 | adantr 274 | . . 3 |
15 | 6, 11, 14 | 3imtr4d 202 | . 2 |
16 | 15 | ssrdv 3153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 cvv 2730 cin 3120 wss 3121 cpw 3564 cint 3829 cfv 5196 cfn 6715 cfi 6942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-er 6510 df-en 6716 df-fin 6718 df-fi 6943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |