ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2b Unicode version

Theorem peano2b 4592
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b  |-  ( A  e.  om  <->  suc  A  e. 
om )

Proof of Theorem peano2b
StepHypRef Expression
1 peano2 4572 . 2  |-  ( A  e.  om  ->  suc  A  e.  om )
2 elex 2737 . . . . 5  |-  ( suc 
A  e.  om  ->  suc 
A  e.  _V )
3 sucexb 4474 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
42, 3sylibr 133 . . . 4  |-  ( suc 
A  e.  om  ->  A  e.  _V )
5 sucidg 4394 . . . 4  |-  ( A  e.  _V  ->  A  e.  suc  A )
64, 5syl 14 . . 3  |-  ( suc 
A  e.  om  ->  A  e.  suc  A )
7 elnn 4583 . . 3  |-  ( ( A  e.  suc  A  /\  suc  A  e.  om )  ->  A  e.  om )
86, 7mpancom 419 . 2  |-  ( suc 
A  e.  om  ->  A  e.  om )
91, 8impbii 125 1  |-  ( A  e.  om  <->  suc  A  e. 
om )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2136   _Vcvv 2726   suc csuc 4343   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568
This theorem is referenced by:  nnpredcl  4600  nnmsucr  6456
  Copyright terms: Public domain W3C validator