ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2b Unicode version

Theorem peano2b 4599
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b  |-  ( A  e.  om  <->  suc  A  e. 
om )

Proof of Theorem peano2b
StepHypRef Expression
1 peano2 4579 . 2  |-  ( A  e.  om  ->  suc  A  e.  om )
2 elex 2741 . . . . 5  |-  ( suc 
A  e.  om  ->  suc 
A  e.  _V )
3 sucexb 4481 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
42, 3sylibr 133 . . . 4  |-  ( suc 
A  e.  om  ->  A  e.  _V )
5 sucidg 4401 . . . 4  |-  ( A  e.  _V  ->  A  e.  suc  A )
64, 5syl 14 . . 3  |-  ( suc 
A  e.  om  ->  A  e.  suc  A )
7 elnn 4590 . . 3  |-  ( ( A  e.  suc  A  /\  suc  A  e.  om )  ->  A  e.  om )
86, 7mpancom 420 . 2  |-  ( suc 
A  e.  om  ->  A  e.  om )
91, 8impbii 125 1  |-  ( A  e.  om  <->  suc  A  e. 
om )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2141   _Vcvv 2730   suc csuc 4350   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575
This theorem is referenced by:  nnpredcl  4607  nnmsucr  6467
  Copyright terms: Public domain W3C validator