ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2b Unicode version

Theorem peano2b 4681
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b  |-  ( A  e.  om  <->  suc  A  e. 
om )

Proof of Theorem peano2b
StepHypRef Expression
1 peano2 4661 . 2  |-  ( A  e.  om  ->  suc  A  e.  om )
2 elex 2788 . . . . 5  |-  ( suc 
A  e.  om  ->  suc 
A  e.  _V )
3 sucexb 4563 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
42, 3sylibr 134 . . . 4  |-  ( suc 
A  e.  om  ->  A  e.  _V )
5 sucidg 4481 . . . 4  |-  ( A  e.  _V  ->  A  e.  suc  A )
64, 5syl 14 . . 3  |-  ( suc 
A  e.  om  ->  A  e.  suc  A )
7 elnn 4672 . . 3  |-  ( ( A  e.  suc  A  /\  suc  A  e.  om )  ->  A  e.  om )
86, 7mpancom 422 . 2  |-  ( suc 
A  e.  om  ->  A  e.  om )
91, 8impbii 126 1  |-  ( A  e.  om  <->  suc  A  e. 
om )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2178   _Vcvv 2776   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657
This theorem is referenced by:  nnpredcl  4689  nnmsucr  6597
  Copyright terms: Public domain W3C validator