ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2b Unicode version

Theorem peano2b 4608
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b  |-  ( A  e.  om  <->  suc  A  e. 
om )

Proof of Theorem peano2b
StepHypRef Expression
1 peano2 4588 . 2  |-  ( A  e.  om  ->  suc  A  e.  om )
2 elex 2746 . . . . 5  |-  ( suc 
A  e.  om  ->  suc 
A  e.  _V )
3 sucexb 4490 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
42, 3sylibr 134 . . . 4  |-  ( suc 
A  e.  om  ->  A  e.  _V )
5 sucidg 4410 . . . 4  |-  ( A  e.  _V  ->  A  e.  suc  A )
64, 5syl 14 . . 3  |-  ( suc 
A  e.  om  ->  A  e.  suc  A )
7 elnn 4599 . . 3  |-  ( ( A  e.  suc  A  /\  suc  A  e.  om )  ->  A  e.  om )
86, 7mpancom 422 . 2  |-  ( suc 
A  e.  om  ->  A  e.  om )
91, 8impbii 126 1  |-  ( A  e.  om  <->  suc  A  e. 
om )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2146   _Vcvv 2735   suc csuc 4359   omcom 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-int 3841  df-suc 4365  df-iom 4584
This theorem is referenced by:  nnpredcl  4616  nnmsucr  6479
  Copyright terms: Public domain W3C validator