ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcexp Unicode version

Theorem pcexp 12707
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )

Proof of Theorem pcexp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5965 . . . . 5  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
21oveq2d 5973 . . . 4  |-  ( x  =  0  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ 0 ) ) )
3 oveq1 5964 . . . 4  |-  ( x  =  0  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( 0  x.  ( P  pCnt  A ) ) )
42, 3eqeq12d 2221 . . 3  |-  ( x  =  0  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P 
pCnt  A ) ) ) )
5 oveq2 5965 . . . . 5  |-  ( x  =  y  ->  ( A ^ x )  =  ( A ^ y
) )
65oveq2d 5973 . . . 4  |-  ( x  =  y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ y ) ) )
7 oveq1 5964 . . . 4  |-  ( x  =  y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( y  x.  ( P  pCnt  A ) ) )
86, 7eqeq12d 2221 . . 3  |-  ( x  =  y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ y
) )  =  ( y  x.  ( P 
pCnt  A ) ) ) )
9 oveq2 5965 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A ^ x )  =  ( A ^ (
y  +  1 ) ) )
109oveq2d 5973 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ ( y  +  1 ) ) ) )
11 oveq1 5964 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) )
1210, 11eqeq12d 2221 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ (
y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P 
pCnt  A ) ) ) )
13 oveq2 5965 . . . . 5  |-  ( x  =  -u y  ->  ( A ^ x )  =  ( A ^ -u y
) )
1413oveq2d 5973 . . . 4  |-  ( x  =  -u y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ -u y ) ) )
15 oveq1 5964 . . . 4  |-  ( x  =  -u y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( -u y  x.  ( P  pCnt  A
) ) )
1614, 15eqeq12d 2221 . . 3  |-  ( x  =  -u y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ -u y
) )  =  (
-u y  x.  ( P  pCnt  A ) ) ) )
17 oveq2 5965 . . . . 5  |-  ( x  =  N  ->  ( A ^ x )  =  ( A ^ N
) )
1817oveq2d 5973 . . . 4  |-  ( x  =  N  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ N ) ) )
19 oveq1 5964 . . . 4  |-  ( x  =  N  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( N  x.  ( P  pCnt  A ) ) )
2018, 19eqeq12d 2221 . . 3  |-  ( x  =  N  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ N
) )  =  ( N  x.  ( P 
pCnt  A ) ) ) )
21 pc1 12703 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2221adantr 276 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  1
)  =  0 )
23 qcn 9775 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
2423ad2antrl 490 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  A  e.  CC )
2524exp0d 10834 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( A ^ 0 )  =  1 )
2625oveq2d 5973 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( P  pCnt  1 ) )
27 pcqcl 12704 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  ZZ )
2827zcnd 9516 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  CC )
2928mul02d 8484 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( 0  x.  ( P  pCnt  A ) )  =  0 )
3022, 26, 293eqtr4d 2249 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P  pCnt  A
) ) )
31 oveq1 5964 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  (
( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) )
32 expp1 10713 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ (
y  +  1 ) )  =  ( ( A ^ y )  x.  A ) )
3324, 32sylan 283 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ ( y  +  1 ) )  =  ( ( A ^
y )  x.  A
) )
3433oveq2d 5973 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( P  pCnt  (
( A ^ y
)  x.  A ) ) )
35 simpll 527 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  P  e.  Prime )
36 simplrl 535 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  QQ )
37 simplrr 536 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  =/=  0 )
38 nn0z 9412 . . . . . . . . . 10  |-  ( y  e.  NN0  ->  y  e.  ZZ )
3938adantl 277 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  ZZ )
40 qexpclz 10727 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  A  =/=  0  /\  y  e.  ZZ )  ->  ( A ^ y )  e.  QQ )
4136, 37, 39, 40syl3anc 1250 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  e.  QQ )
4224adantr 276 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  CC )
43 0z 9403 . . . . . . . . . . . . 13  |-  0  e.  ZZ
44 zq 9767 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4543, 44ax-mp 5 . . . . . . . . . . . 12  |-  0  e.  QQ
46 qapne 9780 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
4736, 45, 46sylancl 413 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A #  0  <->  A  =/=  0
) )
4837, 47mpbird 167 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A #  0 )
4942, 48, 39expap0d 10846 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y ) #  0 )
50 qapne 9780 . . . . . . . . . 10  |-  ( ( ( A ^ y
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A ^
y ) #  0  <->  ( A ^ y )  =/=  0 ) )
5141, 45, 50sylancl 413 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( A ^ y
) #  0  <->  ( A ^ y )  =/=  0 ) )
5249, 51mpbid 147 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  =/=  0 )
53 pcqmul 12701 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 )  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  ( P  pCnt  ( ( A ^
y )  x.  A
) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) ) )
5435, 41, 52, 36, 37, 53syl122anc 1259 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( ( A ^ y )  x.  A ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
5534, 54eqtrd 2239 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
56 nn0cn 9325 . . . . . . . 8  |-  ( y  e.  NN0  ->  y  e.  CC )
5756adantl 277 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  CC )
5828adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  A )  e.  CC )
5957, 58adddirp1d 8119 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( y  +  1 )  x.  ( P 
pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A
) )  +  ( P  pCnt  A )
) )
6055, 59eqeq12d 2221 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ ( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A
) )  <->  ( ( P  pCnt  ( A ^
y ) )  +  ( P  pCnt  A
) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) ) )
6131, 60imbitrrid 156 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) )
6261ex 115 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN0  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) ) )
63 negeq 8285 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  -u ( P  pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
6424adantr 276 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  A  e.  CC )
65 nnnn0 9322 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  NN0 )
6665, 48sylan2 286 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  A #  0 )
6765adantl 277 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  y  e.  NN0 )
68 expnegap0 10714 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  y  e.  NN0 )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
6964, 66, 67, 68syl3anc 1250 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
7069oveq2d 5973 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( P  pCnt  (
1  /  ( A ^ y ) ) ) )
71 simpll 527 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  P  e.  Prime )
7265, 41sylan2 286 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  e.  QQ )
7365, 52sylan2 286 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  =/=  0 )
74 pcrec 12706 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 ) )  ->  ( P  pCnt  ( 1  /  ( A ^ y ) ) )  =  -u ( P  pCnt  ( A ^
y ) ) )
7571, 72, 73, 74syl12anc 1248 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( 1  / 
( A ^ y
) ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
7670, 75eqtrd 2239 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
77 nncn 9064 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
78 mulneg1 8487 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( P  pCnt  A )  e.  CC )  -> 
( -u y  x.  ( P  pCnt  A ) )  =  -u ( y  x.  ( P  pCnt  A
) ) )
7977, 28, 78syl2anr 290 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( -u y  x.  ( P 
pCnt  A ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
8076, 79eqeq12d 2221 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A ) )  <->  -u ( P 
pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) ) )
8163, 80imbitrrid 156 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) )
8281ex 115 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) ) )
834, 8, 12, 16, 20, 30, 62, 82zindd 9511 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( N  e.  ZZ  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) ) )
84833impia 1203 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   class class class wbr 4051  (class class class)co 5957   CCcc 7943   0cc0 7945   1c1 7946    + caddc 7948    x. cmul 7950   -ucneg 8264   # cap 8674    / cdiv 8765   NNcn 9056   NN0cn0 9315   ZZcz 9392   QQcq 9760   ^cexp 10705   Primecprime 12504    pCnt cpc 12682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-2o 6516  df-er 6633  df-en 6841  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350  df-prm 12505  df-pc 12683
This theorem is referenced by:  qexpz  12750  expnprm  12751
  Copyright terms: Public domain W3C validator