ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcexp Unicode version

Theorem pcexp 12200
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )

Proof of Theorem pcexp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5835 . . . . 5  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
21oveq2d 5843 . . . 4  |-  ( x  =  0  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ 0 ) ) )
3 oveq1 5834 . . . 4  |-  ( x  =  0  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( 0  x.  ( P  pCnt  A ) ) )
42, 3eqeq12d 2172 . . 3  |-  ( x  =  0  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P 
pCnt  A ) ) ) )
5 oveq2 5835 . . . . 5  |-  ( x  =  y  ->  ( A ^ x )  =  ( A ^ y
) )
65oveq2d 5843 . . . 4  |-  ( x  =  y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ y ) ) )
7 oveq1 5834 . . . 4  |-  ( x  =  y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( y  x.  ( P  pCnt  A ) ) )
86, 7eqeq12d 2172 . . 3  |-  ( x  =  y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ y
) )  =  ( y  x.  ( P 
pCnt  A ) ) ) )
9 oveq2 5835 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A ^ x )  =  ( A ^ (
y  +  1 ) ) )
109oveq2d 5843 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ ( y  +  1 ) ) ) )
11 oveq1 5834 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) )
1210, 11eqeq12d 2172 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ (
y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P 
pCnt  A ) ) ) )
13 oveq2 5835 . . . . 5  |-  ( x  =  -u y  ->  ( A ^ x )  =  ( A ^ -u y
) )
1413oveq2d 5843 . . . 4  |-  ( x  =  -u y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ -u y ) ) )
15 oveq1 5834 . . . 4  |-  ( x  =  -u y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( -u y  x.  ( P  pCnt  A
) ) )
1614, 15eqeq12d 2172 . . 3  |-  ( x  =  -u y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ -u y
) )  =  (
-u y  x.  ( P  pCnt  A ) ) ) )
17 oveq2 5835 . . . . 5  |-  ( x  =  N  ->  ( A ^ x )  =  ( A ^ N
) )
1817oveq2d 5843 . . . 4  |-  ( x  =  N  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ N ) ) )
19 oveq1 5834 . . . 4  |-  ( x  =  N  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( N  x.  ( P  pCnt  A ) ) )
2018, 19eqeq12d 2172 . . 3  |-  ( x  =  N  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ N
) )  =  ( N  x.  ( P 
pCnt  A ) ) ) )
21 pc1 12196 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2221adantr 274 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  1
)  =  0 )
23 qcn 9550 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
2423ad2antrl 482 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  A  e.  CC )
2524exp0d 10555 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( A ^ 0 )  =  1 )
2625oveq2d 5843 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( P  pCnt  1 ) )
27 pcqcl 12197 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  ZZ )
2827zcnd 9293 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  CC )
2928mul02d 8272 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( 0  x.  ( P  pCnt  A ) )  =  0 )
3022, 26, 293eqtr4d 2200 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P  pCnt  A
) ) )
31 oveq1 5834 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  (
( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) )
32 expp1 10436 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ (
y  +  1 ) )  =  ( ( A ^ y )  x.  A ) )
3324, 32sylan 281 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ ( y  +  1 ) )  =  ( ( A ^
y )  x.  A
) )
3433oveq2d 5843 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( P  pCnt  (
( A ^ y
)  x.  A ) ) )
35 simpll 519 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  P  e.  Prime )
36 simplrl 525 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  QQ )
37 simplrr 526 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  =/=  0 )
38 nn0z 9193 . . . . . . . . . 10  |-  ( y  e.  NN0  ->  y  e.  ZZ )
3938adantl 275 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  ZZ )
40 qexpclz 10450 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  A  =/=  0  /\  y  e.  ZZ )  ->  ( A ^ y )  e.  QQ )
4136, 37, 39, 40syl3anc 1220 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  e.  QQ )
4224adantr 274 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  CC )
43 0z 9184 . . . . . . . . . . . . 13  |-  0  e.  ZZ
44 zq 9542 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4543, 44ax-mp 5 . . . . . . . . . . . 12  |-  0  e.  QQ
46 qapne 9555 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
4736, 45, 46sylancl 410 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A #  0  <->  A  =/=  0
) )
4837, 47mpbird 166 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A #  0 )
4942, 48, 39expap0d 10567 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y ) #  0 )
50 qapne 9555 . . . . . . . . . 10  |-  ( ( ( A ^ y
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A ^
y ) #  0  <->  ( A ^ y )  =/=  0 ) )
5141, 45, 50sylancl 410 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( A ^ y
) #  0  <->  ( A ^ y )  =/=  0 ) )
5249, 51mpbid 146 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  =/=  0 )
53 pcqmul 12194 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 )  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  ( P  pCnt  ( ( A ^
y )  x.  A
) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) ) )
5435, 41, 52, 36, 37, 53syl122anc 1229 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( ( A ^ y )  x.  A ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
5534, 54eqtrd 2190 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
56 nn0cn 9106 . . . . . . . 8  |-  ( y  e.  NN0  ->  y  e.  CC )
5756adantl 275 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  CC )
5828adantr 274 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  A )  e.  CC )
5957, 58adddirp1d 7907 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( y  +  1 )  x.  ( P 
pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A
) )  +  ( P  pCnt  A )
) )
6055, 59eqeq12d 2172 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ ( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A
) )  <->  ( ( P  pCnt  ( A ^
y ) )  +  ( P  pCnt  A
) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) ) )
6131, 60syl5ibr 155 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) )
6261ex 114 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN0  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) ) )
63 negeq 8073 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  -u ( P  pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
6424adantr 274 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  A  e.  CC )
65 nnnn0 9103 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  NN0 )
6665, 48sylan2 284 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  A #  0 )
6765adantl 275 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  y  e.  NN0 )
68 expnegap0 10437 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  y  e.  NN0 )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
6964, 66, 67, 68syl3anc 1220 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
7069oveq2d 5843 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( P  pCnt  (
1  /  ( A ^ y ) ) ) )
71 simpll 519 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  P  e.  Prime )
7265, 41sylan2 284 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  e.  QQ )
7365, 52sylan2 284 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  =/=  0 )
74 pcrec 12199 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 ) )  ->  ( P  pCnt  ( 1  /  ( A ^ y ) ) )  =  -u ( P  pCnt  ( A ^
y ) ) )
7571, 72, 73, 74syl12anc 1218 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( 1  / 
( A ^ y
) ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
7670, 75eqtrd 2190 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
77 nncn 8847 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
78 mulneg1 8275 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( P  pCnt  A )  e.  CC )  -> 
( -u y  x.  ( P  pCnt  A ) )  =  -u ( y  x.  ( P  pCnt  A
) ) )
7977, 28, 78syl2anr 288 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( -u y  x.  ( P 
pCnt  A ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
8076, 79eqeq12d 2172 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A ) )  <->  -u ( P 
pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) ) )
8163, 80syl5ibr 155 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) )
8281ex 114 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) ) )
834, 8, 12, 16, 20, 30, 62, 82zindd 9288 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( N  e.  ZZ  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) ) )
84833impia 1182 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128    =/= wne 2327   class class class wbr 3967  (class class class)co 5827   CCcc 7733   0cc0 7735   1c1 7736    + caddc 7738    x. cmul 7740   -ucneg 8052   # cap 8461    / cdiv 8550   NNcn 8839   NN0cn0 9096   ZZcz 9173   QQcq 9535   ^cexp 10428   Primecprime 12000    pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator