ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcexp Unicode version

Theorem pcexp 12551
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )

Proof of Theorem pcexp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5942 . . . . 5  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
21oveq2d 5950 . . . 4  |-  ( x  =  0  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ 0 ) ) )
3 oveq1 5941 . . . 4  |-  ( x  =  0  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( 0  x.  ( P  pCnt  A ) ) )
42, 3eqeq12d 2219 . . 3  |-  ( x  =  0  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P 
pCnt  A ) ) ) )
5 oveq2 5942 . . . . 5  |-  ( x  =  y  ->  ( A ^ x )  =  ( A ^ y
) )
65oveq2d 5950 . . . 4  |-  ( x  =  y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ y ) ) )
7 oveq1 5941 . . . 4  |-  ( x  =  y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( y  x.  ( P  pCnt  A ) ) )
86, 7eqeq12d 2219 . . 3  |-  ( x  =  y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ y
) )  =  ( y  x.  ( P 
pCnt  A ) ) ) )
9 oveq2 5942 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A ^ x )  =  ( A ^ (
y  +  1 ) ) )
109oveq2d 5950 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ ( y  +  1 ) ) ) )
11 oveq1 5941 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) )
1210, 11eqeq12d 2219 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ (
y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P 
pCnt  A ) ) ) )
13 oveq2 5942 . . . . 5  |-  ( x  =  -u y  ->  ( A ^ x )  =  ( A ^ -u y
) )
1413oveq2d 5950 . . . 4  |-  ( x  =  -u y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ -u y ) ) )
15 oveq1 5941 . . . 4  |-  ( x  =  -u y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( -u y  x.  ( P  pCnt  A
) ) )
1614, 15eqeq12d 2219 . . 3  |-  ( x  =  -u y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ -u y
) )  =  (
-u y  x.  ( P  pCnt  A ) ) ) )
17 oveq2 5942 . . . . 5  |-  ( x  =  N  ->  ( A ^ x )  =  ( A ^ N
) )
1817oveq2d 5950 . . . 4  |-  ( x  =  N  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ N ) ) )
19 oveq1 5941 . . . 4  |-  ( x  =  N  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( N  x.  ( P  pCnt  A ) ) )
2018, 19eqeq12d 2219 . . 3  |-  ( x  =  N  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ N
) )  =  ( N  x.  ( P 
pCnt  A ) ) ) )
21 pc1 12547 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2221adantr 276 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  1
)  =  0 )
23 qcn 9737 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
2423ad2antrl 490 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  A  e.  CC )
2524exp0d 10793 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( A ^ 0 )  =  1 )
2625oveq2d 5950 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( P  pCnt  1 ) )
27 pcqcl 12548 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  ZZ )
2827zcnd 9478 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  CC )
2928mul02d 8446 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( 0  x.  ( P  pCnt  A ) )  =  0 )
3022, 26, 293eqtr4d 2247 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P  pCnt  A
) ) )
31 oveq1 5941 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  (
( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) )
32 expp1 10672 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ (
y  +  1 ) )  =  ( ( A ^ y )  x.  A ) )
3324, 32sylan 283 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ ( y  +  1 ) )  =  ( ( A ^
y )  x.  A
) )
3433oveq2d 5950 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( P  pCnt  (
( A ^ y
)  x.  A ) ) )
35 simpll 527 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  P  e.  Prime )
36 simplrl 535 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  QQ )
37 simplrr 536 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  =/=  0 )
38 nn0z 9374 . . . . . . . . . 10  |-  ( y  e.  NN0  ->  y  e.  ZZ )
3938adantl 277 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  ZZ )
40 qexpclz 10686 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  A  =/=  0  /\  y  e.  ZZ )  ->  ( A ^ y )  e.  QQ )
4136, 37, 39, 40syl3anc 1249 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  e.  QQ )
4224adantr 276 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  CC )
43 0z 9365 . . . . . . . . . . . . 13  |-  0  e.  ZZ
44 zq 9729 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4543, 44ax-mp 5 . . . . . . . . . . . 12  |-  0  e.  QQ
46 qapne 9742 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
4736, 45, 46sylancl 413 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A #  0  <->  A  =/=  0
) )
4837, 47mpbird 167 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A #  0 )
4942, 48, 39expap0d 10805 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y ) #  0 )
50 qapne 9742 . . . . . . . . . 10  |-  ( ( ( A ^ y
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A ^
y ) #  0  <->  ( A ^ y )  =/=  0 ) )
5141, 45, 50sylancl 413 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( A ^ y
) #  0  <->  ( A ^ y )  =/=  0 ) )
5249, 51mpbid 147 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  =/=  0 )
53 pcqmul 12545 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 )  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  ( P  pCnt  ( ( A ^
y )  x.  A
) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) ) )
5435, 41, 52, 36, 37, 53syl122anc 1258 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( ( A ^ y )  x.  A ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
5534, 54eqtrd 2237 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
56 nn0cn 9287 . . . . . . . 8  |-  ( y  e.  NN0  ->  y  e.  CC )
5756adantl 277 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  CC )
5828adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  A )  e.  CC )
5957, 58adddirp1d 8081 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( y  +  1 )  x.  ( P 
pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A
) )  +  ( P  pCnt  A )
) )
6055, 59eqeq12d 2219 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ ( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A
) )  <->  ( ( P  pCnt  ( A ^
y ) )  +  ( P  pCnt  A
) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) ) )
6131, 60imbitrrid 156 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) )
6261ex 115 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN0  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) ) )
63 negeq 8247 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  -u ( P  pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
6424adantr 276 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  A  e.  CC )
65 nnnn0 9284 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  NN0 )
6665, 48sylan2 286 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  A #  0 )
6765adantl 277 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  y  e.  NN0 )
68 expnegap0 10673 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  y  e.  NN0 )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
6964, 66, 67, 68syl3anc 1249 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
7069oveq2d 5950 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( P  pCnt  (
1  /  ( A ^ y ) ) ) )
71 simpll 527 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  P  e.  Prime )
7265, 41sylan2 286 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  e.  QQ )
7365, 52sylan2 286 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  =/=  0 )
74 pcrec 12550 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 ) )  ->  ( P  pCnt  ( 1  /  ( A ^ y ) ) )  =  -u ( P  pCnt  ( A ^
y ) ) )
7571, 72, 73, 74syl12anc 1247 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( 1  / 
( A ^ y
) ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
7670, 75eqtrd 2237 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
77 nncn 9026 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
78 mulneg1 8449 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( P  pCnt  A )  e.  CC )  -> 
( -u y  x.  ( P  pCnt  A ) )  =  -u ( y  x.  ( P  pCnt  A
) ) )
7977, 28, 78syl2anr 290 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( -u y  x.  ( P 
pCnt  A ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
8076, 79eqeq12d 2219 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A ) )  <->  -u ( P 
pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) ) )
8163, 80imbitrrid 156 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) )
8281ex 115 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) ) )
834, 8, 12, 16, 20, 30, 62, 82zindd 9473 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( N  e.  ZZ  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) ) )
84833impia 1202 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375   class class class wbr 4043  (class class class)co 5934   CCcc 7905   0cc0 7907   1c1 7908    + caddc 7910    x. cmul 7912   -ucneg 8226   # cap 8636    / cdiv 8727   NNcn 9018   NN0cn0 9277   ZZcz 9354   QQcq 9722   ^cexp 10664   Primecprime 12348    pCnt cpc 12526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-2o 6493  df-er 6610  df-en 6818  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-fl 10394  df-mod 10449  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-dvds 12018  df-gcd 12194  df-prm 12349  df-pc 12527
This theorem is referenced by:  qexpz  12594  expnprm  12595
  Copyright terms: Public domain W3C validator