ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcexp Unicode version

Theorem pcexp 12503
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )

Proof of Theorem pcexp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . . 5  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
21oveq2d 5941 . . . 4  |-  ( x  =  0  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ 0 ) ) )
3 oveq1 5932 . . . 4  |-  ( x  =  0  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( 0  x.  ( P  pCnt  A ) ) )
42, 3eqeq12d 2211 . . 3  |-  ( x  =  0  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P 
pCnt  A ) ) ) )
5 oveq2 5933 . . . . 5  |-  ( x  =  y  ->  ( A ^ x )  =  ( A ^ y
) )
65oveq2d 5941 . . . 4  |-  ( x  =  y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ y ) ) )
7 oveq1 5932 . . . 4  |-  ( x  =  y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( y  x.  ( P  pCnt  A ) ) )
86, 7eqeq12d 2211 . . 3  |-  ( x  =  y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ y
) )  =  ( y  x.  ( P 
pCnt  A ) ) ) )
9 oveq2 5933 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A ^ x )  =  ( A ^ (
y  +  1 ) ) )
109oveq2d 5941 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ ( y  +  1 ) ) ) )
11 oveq1 5932 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) )
1210, 11eqeq12d 2211 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ (
y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P 
pCnt  A ) ) ) )
13 oveq2 5933 . . . . 5  |-  ( x  =  -u y  ->  ( A ^ x )  =  ( A ^ -u y
) )
1413oveq2d 5941 . . . 4  |-  ( x  =  -u y  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ -u y ) ) )
15 oveq1 5932 . . . 4  |-  ( x  =  -u y  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( -u y  x.  ( P  pCnt  A
) ) )
1614, 15eqeq12d 2211 . . 3  |-  ( x  =  -u y  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ -u y
) )  =  (
-u y  x.  ( P  pCnt  A ) ) ) )
17 oveq2 5933 . . . . 5  |-  ( x  =  N  ->  ( A ^ x )  =  ( A ^ N
) )
1817oveq2d 5941 . . . 4  |-  ( x  =  N  ->  ( P  pCnt  ( A ^
x ) )  =  ( P  pCnt  ( A ^ N ) ) )
19 oveq1 5932 . . . 4  |-  ( x  =  N  ->  (
x  x.  ( P 
pCnt  A ) )  =  ( N  x.  ( P  pCnt  A ) ) )
2018, 19eqeq12d 2211 . . 3  |-  ( x  =  N  ->  (
( P  pCnt  ( A ^ x ) )  =  ( x  x.  ( P  pCnt  A
) )  <->  ( P  pCnt  ( A ^ N
) )  =  ( N  x.  ( P 
pCnt  A ) ) ) )
21 pc1 12499 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
2221adantr 276 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  1
)  =  0 )
23 qcn 9725 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
2423ad2antrl 490 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  A  e.  CC )
2524exp0d 10776 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( A ^ 0 )  =  1 )
2625oveq2d 5941 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( P  pCnt  1 ) )
27 pcqcl 12500 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  ZZ )
2827zcnd 9466 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  CC )
2928mul02d 8435 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( 0  x.  ( P  pCnt  A ) )  =  0 )
3022, 26, 293eqtr4d 2239 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( P  pCnt  ( A ^ 0 ) )  =  ( 0  x.  ( P  pCnt  A
) ) )
31 oveq1 5932 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  (
( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) )
32 expp1 10655 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  NN0 )  -> 
( A ^ (
y  +  1 ) )  =  ( ( A ^ y )  x.  A ) )
3324, 32sylan 283 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ ( y  +  1 ) )  =  ( ( A ^
y )  x.  A
) )
3433oveq2d 5941 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( P  pCnt  (
( A ^ y
)  x.  A ) ) )
35 simpll 527 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  P  e.  Prime )
36 simplrl 535 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  QQ )
37 simplrr 536 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  =/=  0 )
38 nn0z 9363 . . . . . . . . . 10  |-  ( y  e.  NN0  ->  y  e.  ZZ )
3938adantl 277 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  ZZ )
40 qexpclz 10669 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  A  =/=  0  /\  y  e.  ZZ )  ->  ( A ^ y )  e.  QQ )
4136, 37, 39, 40syl3anc 1249 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  e.  QQ )
4224adantr 276 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A  e.  CC )
43 0z 9354 . . . . . . . . . . . . 13  |-  0  e.  ZZ
44 zq 9717 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
4543, 44ax-mp 5 . . . . . . . . . . . 12  |-  0  e.  QQ
46 qapne 9730 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
4736, 45, 46sylancl 413 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A #  0  <->  A  =/=  0
) )
4837, 47mpbird 167 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  A #  0 )
4942, 48, 39expap0d 10788 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y ) #  0 )
50 qapne 9730 . . . . . . . . . 10  |-  ( ( ( A ^ y
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A ^
y ) #  0  <->  ( A ^ y )  =/=  0 ) )
5141, 45, 50sylancl 413 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( A ^ y
) #  0  <->  ( A ^ y )  =/=  0 ) )
5249, 51mpbid 147 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( A ^ y )  =/=  0 )
53 pcqmul 12497 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 )  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  ->  ( P  pCnt  ( ( A ^
y )  x.  A
) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P  pCnt  A ) ) )
5435, 41, 52, 36, 37, 53syl122anc 1258 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( ( A ^ y )  x.  A ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
5534, 54eqtrd 2229 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( P  pCnt  ( A ^ y ) )  +  ( P 
pCnt  A ) ) )
56 nn0cn 9276 . . . . . . . 8  |-  ( y  e.  NN0  ->  y  e.  CC )
5756adantl 277 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  y  e.  CC )
5828adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  ( P  pCnt  A )  e.  CC )
5957, 58adddirp1d 8070 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( y  +  1 )  x.  ( P 
pCnt  A ) )  =  ( ( y  x.  ( P  pCnt  A
) )  +  ( P  pCnt  A )
) )
6055, 59eqeq12d 2211 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ ( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A
) )  <->  ( ( P  pCnt  ( A ^
y ) )  +  ( P  pCnt  A
) )  =  ( ( y  x.  ( P  pCnt  A ) )  +  ( P  pCnt  A ) ) ) )
6131, 60imbitrrid 156 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e. 
NN0 )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) )
6261ex 115 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN0  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^
( y  +  1 ) ) )  =  ( ( y  +  1 )  x.  ( P  pCnt  A ) ) ) ) )
63 negeq 8236 . . . . 5  |-  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  -u ( P  pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
6424adantr 276 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  A  e.  CC )
65 nnnn0 9273 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  NN0 )
6665, 48sylan2 286 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  A #  0 )
6765adantl 277 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  y  e.  NN0 )
68 expnegap0 10656 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  y  e.  NN0 )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
6964, 66, 67, 68syl3anc 1249 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ -u y )  =  ( 1  / 
( A ^ y
) ) )
7069oveq2d 5941 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( P  pCnt  (
1  /  ( A ^ y ) ) ) )
71 simpll 527 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  P  e.  Prime )
7265, 41sylan2 286 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  e.  QQ )
7365, 52sylan2 286 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( A ^ y )  =/=  0 )
74 pcrec 12502 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
( A ^ y
)  e.  QQ  /\  ( A ^ y )  =/=  0 ) )  ->  ( P  pCnt  ( 1  /  ( A ^ y ) ) )  =  -u ( P  pCnt  ( A ^
y ) ) )
7571, 72, 73, 74syl12anc 1247 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( 1  / 
( A ^ y
) ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
7670, 75eqtrd 2229 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( P  pCnt  ( A ^ -u y ) )  = 
-u ( P  pCnt  ( A ^ y ) ) )
77 nncn 9015 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
78 mulneg1 8438 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( P  pCnt  A )  e.  CC )  -> 
( -u y  x.  ( P  pCnt  A ) )  =  -u ( y  x.  ( P  pCnt  A
) ) )
7977, 28, 78syl2anr 290 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  ( -u y  x.  ( P 
pCnt  A ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) )
8076, 79eqeq12d 2211 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A ) )  <->  -u ( P 
pCnt  ( A ^
y ) )  = 
-u ( y  x.  ( P  pCnt  A
) ) ) )
8163, 80imbitrrid 156 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  /\  y  e.  NN )  ->  (
( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A
) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) )
8281ex 115 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( y  e.  NN  ->  ( ( P  pCnt  ( A ^ y ) )  =  ( y  x.  ( P  pCnt  A ) )  ->  ( P  pCnt  ( A ^ -u y ) )  =  ( -u y  x.  ( P  pCnt  A
) ) ) ) )
834, 8, 12, 16, 20, 30, 62, 82zindd 9461 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 ) )  -> 
( N  e.  ZZ  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) ) )
84833impia 1202 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( P  pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   -ucneg 8215   # cap 8625    / cdiv 8716   NNcn 9007   NN0cn0 9266   ZZcz 9343   QQcq 9710   ^cexp 10647   Primecprime 12300    pCnt cpc 12478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301  df-pc 12479
This theorem is referenced by:  qexpz  12546  expnprm  12547
  Copyright terms: Public domain W3C validator