ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blss2 Unicode version

Theorem blss2 12778
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blss2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )

Proof of Theorem blss2
StepHypRef Expression
1 simpl1 985 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  D  e.  ( *Met `  X ) )
2 simpl2 986 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  P  e.  X )
3 simpl3 987 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  Q  e.  X )
4 simpr1 988 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  R  e.  RR )
54rexrd 7921 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  R  e.  RR* )
6 simpr2 989 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  S  e.  RR )
76rexrd 7921 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  S  e.  RR* )
86, 4resubcld 8250 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( S  -  R
)  e.  RR )
9 simpr3 990 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  <_  ( S  -  R ) )
10 xmetlecl 12738 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  Q  e.  X )  /\  (
( S  -  R
)  e.  RR  /\  ( P D Q )  <_  ( S  -  R ) ) )  ->  ( P D Q )  e.  RR )
111, 2, 3, 8, 9, 10syl122anc 1229 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  e.  RR )
12 rexsub 9750 . . . 4  |-  ( ( S  e.  RR  /\  R  e.  RR )  ->  ( S +e  -e R )  =  ( S  -  R
) )
136, 4, 12syl2anc 409 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( S +e  -e R )  =  ( S  -  R
) )
149, 13breqtrrd 3992 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  <_  ( S +e  -e R ) )
151, 2, 3, 5, 7, 11, 14xblss2 12776 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1335    e. wcel 2128    C_ wss 3102   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   RRcr 7725    <_ cle 7907    - cmin 8040    -ecxne 9669   +ecxad 9670   *Metcxmet 12351   ballcbl 12353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-map 6592  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-2 8886  df-xneg 9672  df-xadd 9673  df-psmet 12358  df-xmet 12359  df-bl 12361
This theorem is referenced by:  blhalf  12779  blss  12799
  Copyright terms: Public domain W3C validator