ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blss2 Unicode version

Theorem blss2 14586
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blss2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )

Proof of Theorem blss2
StepHypRef Expression
1 simpl1 1002 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  D  e.  ( *Met `  X ) )
2 simpl2 1003 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  P  e.  X )
3 simpl3 1004 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  Q  e.  X )
4 simpr1 1005 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  R  e.  RR )
54rexrd 8071 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  R  e.  RR* )
6 simpr2 1006 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  S  e.  RR )
76rexrd 8071 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  S  e.  RR* )
86, 4resubcld 8402 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( S  -  R
)  e.  RR )
9 simpr3 1007 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  <_  ( S  -  R ) )
10 xmetlecl 14546 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  Q  e.  X )  /\  (
( S  -  R
)  e.  RR  /\  ( P D Q )  <_  ( S  -  R ) ) )  ->  ( P D Q )  e.  RR )
111, 2, 3, 8, 9, 10syl122anc 1258 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  e.  RR )
12 rexsub 9922 . . . 4  |-  ( ( S  e.  RR  /\  R  e.  RR )  ->  ( S +e  -e R )  =  ( S  -  R
) )
136, 4, 12syl2anc 411 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( S +e  -e R )  =  ( S  -  R
) )
149, 13breqtrrd 4058 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  <_  ( S +e  -e R ) )
151, 2, 3, 5, 7, 11, 14xblss2 14584 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   RRcr 7873    <_ cle 8057    - cmin 8192    -ecxne 9838   +ecxad 9839   *Metcxmet 14035   ballcbl 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-2 9043  df-xneg 9841  df-xadd 9842  df-psmet 14042  df-xmet 14043  df-bl 14045
This theorem is referenced by:  blhalf  14587  blss  14607
  Copyright terms: Public domain W3C validator