Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl32anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | |
sylXanc.2 | |
sylXanc.3 | |
sylXanc.4 | |
sylXanc.5 | |
syl32anc.6 |
Ref | Expression |
---|---|
syl32anc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 | |
2 | sylXanc.2 | . 2 | |
3 | sylXanc.3 | . 2 | |
4 | sylXanc.4 | . . 3 | |
5 | sylXanc.5 | . . 3 | |
6 | 4, 5 | jca 304 | . 2 |
7 | syl32anc.6 | . 2 | |
8 | 1, 2, 3, 6, 7 | syl31anc 1231 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ioom 10192 modifeq2int 10317 modaddmodup 10318 seq3f1olemqsum 10431 seq3f1o 10435 exple1 10507 leexp2rd 10614 nn0ltexp2 10619 facubnd 10654 permnn 10680 dfabsmax 11155 expcnvre 11440 dvdsadd2b 11776 dvdsmulgcd 11954 sqgcd 11958 bezoutr 11961 cncongr2 12032 pw2dvds 12094 hashgcdlem 12166 modprm0 12182 modprmn0modprm0 12184 tgioo 13146 lgssq 13541 lgssq2 13542 |
Copyright terms: Public domain | W3C validator |