ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc Unicode version

Theorem syl32anc 1246
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
syl32anc.6  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ( ta  /\  et ) )  ->  ze )
Assertion
Ref Expression
syl32anc  |-  ( ph  ->  ze )

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . . 3  |-  ( ph  ->  ta )
5 sylXanc.5 . . 3  |-  ( ph  ->  et )
64, 5jca 306 . 2  |-  ( ph  ->  ( ta  /\  et ) )
7 syl32anc.6 . 2  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ( ta  /\  et ) )  ->  ze )
81, 2, 3, 6, 7syl31anc 1241 1  |-  ( ph  ->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  ioom  10263  modifeq2int  10388  modaddmodup  10389  seq3f1olemqsum  10502  seq3f1o  10506  exple1  10578  leexp2rd  10686  nn0ltexp2  10691  facubnd  10727  permnn  10753  dfabsmax  11228  expcnvre  11513  dvdsadd2b  11849  dvdsmulgcd  12028  sqgcd  12032  bezoutr  12035  cncongr2  12106  pw2dvds  12168  hashgcdlem  12240  modprm0  12256  modprmn0modprm0  12258  tgioo  14085  lgssq  14480  lgssq2  14481
  Copyright terms: Public domain W3C validator