ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc Unicode version

Theorem syl32anc 1258
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
syl32anc.6  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ( ta  /\  et ) )  ->  ze )
Assertion
Ref Expression
syl32anc  |-  ( ph  ->  ze )

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . . 3  |-  ( ph  ->  ta )
5 sylXanc.5 . . 3  |-  ( ph  ->  et )
64, 5jca 306 . 2  |-  ( ph  ->  ( ta  /\  et ) )
7 syl32anc.6 . 2  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ( ta  /\  et ) )  ->  ze )
81, 2, 3, 6, 7syl31anc 1253 1  |-  ( ph  ->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  ioom  10425  modifeq2int  10553  modaddmodup  10554  seq3f1olemqsum  10680  seq3f1o  10684  exple1  10762  leexp2rd  10870  nn0ltexp2  10876  facubnd  10912  permnn  10938  dfabsmax  11603  expcnvre  11889  dvdsadd2b  12226  dvdsmulgcd  12421  sqgcd  12425  bezoutr  12428  cncongr2  12501  pw2dvds  12563  hashgcdlem  12635  modprm0  12652  modprmn0modprm0  12654  2idlcpblrng  14360  tgioo  15101  mpodvdsmulf1o  15537  perfectlem2  15547  lgssq  15592  lgssq2  15593  gausslemma2dlem7  15620  lgsquad2lem1  15633  lgsquad2lem2  15634
  Copyright terms: Public domain W3C validator