| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl32anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl32anc.6 |
|
| Ref | Expression |
|---|---|
| syl32anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl32anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl31anc 1274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ioom 10475 modifeq2int 10603 modaddmodup 10604 seq3f1olemqsum 10730 seq3f1o 10734 exple1 10812 leexp2rd 10920 nn0ltexp2 10926 facubnd 10962 permnn 10988 dfabsmax 11723 expcnvre 12009 dvdsadd2b 12346 dvdsmulgcd 12541 sqgcd 12545 bezoutr 12548 cncongr2 12621 pw2dvds 12683 hashgcdlem 12755 modprm0 12772 modprmn0modprm0 12774 2idlcpblrng 14481 tgioo 15222 mpodvdsmulf1o 15658 perfectlem2 15668 lgssq 15713 lgssq2 15714 gausslemma2dlem7 15741 lgsquad2lem1 15754 lgsquad2lem2 15755 |
| Copyright terms: Public domain | W3C validator |