ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl32anc Unicode version

Theorem syl32anc 1279
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
syl32anc.6  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ( ta  /\  et ) )  ->  ze )
Assertion
Ref Expression
syl32anc  |-  ( ph  ->  ze )

Proof of Theorem syl32anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . . 3  |-  ( ph  ->  ta )
5 sylXanc.5 . . 3  |-  ( ph  ->  et )
64, 5jca 306 . 2  |-  ( ph  ->  ( ta  /\  et ) )
7 syl32anc.6 . 2  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ( ta  /\  et ) )  ->  ze )
81, 2, 3, 6, 7syl31anc 1274 1  |-  ( ph  ->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  ioom  10475  modifeq2int  10603  modaddmodup  10604  seq3f1olemqsum  10730  seq3f1o  10734  exple1  10812  leexp2rd  10920  nn0ltexp2  10926  facubnd  10962  permnn  10988  dfabsmax  11723  expcnvre  12009  dvdsadd2b  12346  dvdsmulgcd  12541  sqgcd  12545  bezoutr  12548  cncongr2  12621  pw2dvds  12683  hashgcdlem  12755  modprm0  12772  modprmn0modprm0  12774  2idlcpblrng  14481  tgioo  15222  mpodvdsmulf1o  15658  perfectlem2  15668  lgssq  15713  lgssq2  15714  gausslemma2dlem7  15741  lgsquad2lem1  15754  lgsquad2lem2  15755
  Copyright terms: Public domain W3C validator