| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl32anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl32anc.6 |
|
| Ref | Expression |
|---|---|
| syl32anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl32anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl31anc 1253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ioom 10425 modifeq2int 10553 modaddmodup 10554 seq3f1olemqsum 10680 seq3f1o 10684 exple1 10762 leexp2rd 10870 nn0ltexp2 10876 facubnd 10912 permnn 10938 dfabsmax 11603 expcnvre 11889 dvdsadd2b 12226 dvdsmulgcd 12421 sqgcd 12425 bezoutr 12428 cncongr2 12501 pw2dvds 12563 hashgcdlem 12635 modprm0 12652 modprmn0modprm0 12654 2idlcpblrng 14360 tgioo 15101 mpodvdsmulf1o 15537 perfectlem2 15547 lgssq 15592 lgssq2 15593 gausslemma2dlem7 15620 lgsquad2lem1 15633 lgsquad2lem2 15634 |
| Copyright terms: Public domain | W3C validator |