| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl32anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl32anc.6 |
|
| Ref | Expression |
|---|---|
| syl32anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl32anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl31anc 1252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ioom 10384 modifeq2int 10512 modaddmodup 10513 seq3f1olemqsum 10639 seq3f1o 10643 exple1 10721 leexp2rd 10829 nn0ltexp2 10835 facubnd 10871 permnn 10897 dfabsmax 11447 expcnvre 11733 dvdsadd2b 12070 dvdsmulgcd 12265 sqgcd 12269 bezoutr 12272 cncongr2 12345 pw2dvds 12407 hashgcdlem 12479 modprm0 12496 modprmn0modprm0 12498 2idlcpblrng 14203 tgioo 14944 mpodvdsmulf1o 15380 perfectlem2 15390 lgssq 15435 lgssq2 15436 gausslemma2dlem7 15463 lgsquad2lem1 15476 lgsquad2lem2 15477 |
| Copyright terms: Public domain | W3C validator |