| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl32anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| sylXanc.5 |
|
| syl32anc.6 |
|
| Ref | Expression |
|---|---|
| syl32anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. 2
| |
| 3 | sylXanc.3 |
. 2
| |
| 4 | sylXanc.4 |
. . 3
| |
| 5 | sylXanc.5 |
. . 3
| |
| 6 | 4, 5 | jca 306 |
. 2
|
| 7 | syl32anc.6 |
. 2
| |
| 8 | 1, 2, 3, 6, 7 | syl31anc 1252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ioom 10401 modifeq2int 10529 modaddmodup 10530 seq3f1olemqsum 10656 seq3f1o 10660 exple1 10738 leexp2rd 10846 nn0ltexp2 10852 facubnd 10888 permnn 10914 dfabsmax 11470 expcnvre 11756 dvdsadd2b 12093 dvdsmulgcd 12288 sqgcd 12292 bezoutr 12295 cncongr2 12368 pw2dvds 12430 hashgcdlem 12502 modprm0 12519 modprmn0modprm0 12521 2idlcpblrng 14227 tgioo 14968 mpodvdsmulf1o 15404 perfectlem2 15414 lgssq 15459 lgssq2 15460 gausslemma2dlem7 15487 lgsquad2lem1 15500 lgsquad2lem2 15501 |
| Copyright terms: Public domain | W3C validator |