| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl32anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| sylXanc.1 | 
 | 
| sylXanc.2 | 
 | 
| sylXanc.3 | 
 | 
| sylXanc.4 | 
 | 
| sylXanc.5 | 
 | 
| syl32anc.6 | 
 | 
| Ref | Expression | 
|---|---|
| syl32anc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylXanc.1 | 
. 2
 | |
| 2 | sylXanc.2 | 
. 2
 | |
| 3 | sylXanc.3 | 
. 2
 | |
| 4 | sylXanc.4 | 
. . 3
 | |
| 5 | sylXanc.5 | 
. . 3
 | |
| 6 | 4, 5 | jca 306 | 
. 2
 | 
| 7 | syl32anc.6 | 
. 2
 | |
| 8 | 1, 2, 3, 6, 7 | syl31anc 1252 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: ioom 10350 modifeq2int 10478 modaddmodup 10479 seq3f1olemqsum 10605 seq3f1o 10609 exple1 10687 leexp2rd 10795 nn0ltexp2 10801 facubnd 10837 permnn 10863 dfabsmax 11382 expcnvre 11668 dvdsadd2b 12005 dvdsmulgcd 12192 sqgcd 12196 bezoutr 12199 cncongr2 12272 pw2dvds 12334 hashgcdlem 12406 modprm0 12423 modprmn0modprm0 12425 2idlcpblrng 14079 tgioo 14790 mpodvdsmulf1o 15226 perfectlem2 15236 lgssq 15281 lgssq2 15282 gausslemma2dlem7 15309 lgsquad2lem1 15322 lgsquad2lem2 15323 | 
| Copyright terms: Public domain | W3C validator |