ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcqdiv Unicode version

Theorem pcqdiv 12487
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcqdiv  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) )

Proof of Theorem pcqdiv
StepHypRef Expression
1 simp2l 1025 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  QQ )
2 qcn 9711 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
31, 2syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  CC )
4 simp3l 1027 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  QQ )
5 qcn 9711 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
64, 5syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  CC )
7 simp3r 1028 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
8 0z 9340 . . . . . . . . 9  |-  0  e.  ZZ
9 zq 9703 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
108, 9ax-mp 5 . . . . . . . 8  |-  0  e.  QQ
11 qapne 9716 . . . . . . . 8  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
124, 10, 11sylancl 413 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( B #  0  <->  B  =/=  0 ) )
137, 12mpbird 167 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B #  0 )
143, 6, 13divcanap1d 8821 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  /  B )  x.  B
)  =  A )
1514oveq2d 5939 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( P 
pCnt  A ) )
16 simp1 999 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  P  e.  Prime )
17 qdivcl 9720 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
181, 4, 7, 17syl3anc 1249 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
)  e.  QQ )
19 simp2r 1026 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
20 qapne 9716 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
211, 10, 20sylancl 413 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A #  0  <->  A  =/=  0 ) )
2219, 21mpbird 167 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A #  0 )
233, 6, 22, 13divap0d 8836 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
) #  0 )
24 qapne 9716 . . . . . . 7  |-  ( ( ( A  /  B
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A  /  B ) #  0  <->  ( A  /  B )  =/=  0
) )
2518, 10, 24sylancl 413 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  /  B ) #  0  <->  ( A  /  B )  =/=  0
) )
2623, 25mpbid 147 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
)  =/=  0 )
27 pcqmul 12483 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
2816, 18, 26, 4, 7, 27syl122anc 1258 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
2915, 28eqtr3d 2231 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
3029oveq1d 5938 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( ( ( P 
pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) )  -  ( P  pCnt  B ) ) )
31 pcqcl 12486 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  /  B
) )  e.  ZZ )
3216, 18, 26, 31syl12anc 1247 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  e.  ZZ )
3332zcnd 9452 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  e.  CC )
34 pcqcl 12486 . . . . 5  |-  ( ( P  e.  Prime  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
35343adant2 1018 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3635zcnd 9452 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  CC )
3733, 36pncand 8341 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( ( P 
pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) )  -  ( P  pCnt  B ) )  =  ( P  pCnt  ( A  /  B ) ) )
3830, 37eqtr2d 2230 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034  (class class class)co 5923   CCcc 7880   0cc0 7882    + caddc 7885    x. cmul 7887    - cmin 8200   # cap 8611    / cdiv 8702   ZZcz 9329   QQcq 9696   Primecprime 12286    pCnt cpc 12464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-frec 6451  df-1o 6476  df-2o 6477  df-er 6594  df-en 6802  df-sup 7052  df-inf 7053  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-fz 10087  df-fzo 10221  df-fl 10363  df-mod 10418  df-seqfrec 10543  df-exp 10634  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-dvds 11956  df-gcd 12132  df-prm 12287  df-pc 12465
This theorem is referenced by:  pcrec  12488
  Copyright terms: Public domain W3C validator