ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcqdiv Unicode version

Theorem pcqdiv 12445
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcqdiv  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) )

Proof of Theorem pcqdiv
StepHypRef Expression
1 simp2l 1025 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  QQ )
2 qcn 9699 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
31, 2syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  CC )
4 simp3l 1027 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  QQ )
5 qcn 9699 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
64, 5syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  CC )
7 simp3r 1028 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
8 0z 9328 . . . . . . . . 9  |-  0  e.  ZZ
9 zq 9691 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
108, 9ax-mp 5 . . . . . . . 8  |-  0  e.  QQ
11 qapne 9704 . . . . . . . 8  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
124, 10, 11sylancl 413 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( B #  0  <->  B  =/=  0 ) )
137, 12mpbird 167 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B #  0 )
143, 6, 13divcanap1d 8810 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  /  B )  x.  B
)  =  A )
1514oveq2d 5934 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( P 
pCnt  A ) )
16 simp1 999 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  P  e.  Prime )
17 qdivcl 9708 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
181, 4, 7, 17syl3anc 1249 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
)  e.  QQ )
19 simp2r 1026 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
20 qapne 9704 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
211, 10, 20sylancl 413 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A #  0  <->  A  =/=  0 ) )
2219, 21mpbird 167 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A #  0 )
233, 6, 22, 13divap0d 8825 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
) #  0 )
24 qapne 9704 . . . . . . 7  |-  ( ( ( A  /  B
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A  /  B ) #  0  <->  ( A  /  B )  =/=  0
) )
2518, 10, 24sylancl 413 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  /  B ) #  0  <->  ( A  /  B )  =/=  0
) )
2623, 25mpbid 147 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
)  =/=  0 )
27 pcqmul 12441 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
2816, 18, 26, 4, 7, 27syl122anc 1258 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
2915, 28eqtr3d 2228 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
3029oveq1d 5933 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( ( ( P 
pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) )  -  ( P  pCnt  B ) ) )
31 pcqcl 12444 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  /  B
) )  e.  ZZ )
3216, 18, 26, 31syl12anc 1247 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  e.  ZZ )
3332zcnd 9440 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  e.  CC )
34 pcqcl 12444 . . . . 5  |-  ( ( P  e.  Prime  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
35343adant2 1018 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3635zcnd 9440 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  CC )
3733, 36pncand 8331 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( ( P 
pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) )  -  ( P  pCnt  B ) )  =  ( P  pCnt  ( A  /  B ) ) )
3830, 37eqtr2d 2227 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029  (class class class)co 5918   CCcc 7870   0cc0 7872    + caddc 7875    x. cmul 7877    - cmin 8190   # cap 8600    / cdiv 8691   ZZcz 9317   QQcq 9684   Primecprime 12245    pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by:  pcrec  12446
  Copyright terms: Public domain W3C validator