ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcqdiv Unicode version

Theorem pcqdiv 12265
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcqdiv  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) )

Proof of Theorem pcqdiv
StepHypRef Expression
1 simp2l 1019 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  QQ )
2 qcn 9597 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
31, 2syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  CC )
4 simp3l 1021 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  QQ )
5 qcn 9597 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
64, 5syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  CC )
7 simp3r 1022 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
8 0z 9227 . . . . . . . . 9  |-  0  e.  ZZ
9 zq 9589 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
108, 9ax-mp 5 . . . . . . . 8  |-  0  e.  QQ
11 qapne 9602 . . . . . . . 8  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
124, 10, 11sylancl 411 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( B #  0  <->  B  =/=  0 ) )
137, 12mpbird 166 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B #  0 )
143, 6, 13divcanap1d 8712 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  /  B )  x.  B
)  =  A )
1514oveq2d 5873 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( P 
pCnt  A ) )
16 simp1 993 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  P  e.  Prime )
17 qdivcl 9606 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
181, 4, 7, 17syl3anc 1234 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
)  e.  QQ )
19 simp2r 1020 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
20 qapne 9602 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
211, 10, 20sylancl 411 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A #  0  <->  A  =/=  0 ) )
2219, 21mpbird 166 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A #  0 )
233, 6, 22, 13divap0d 8727 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
) #  0 )
24 qapne 9602 . . . . . . 7  |-  ( ( ( A  /  B
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( A  /  B ) #  0  <->  ( A  /  B )  =/=  0
) )
2518, 10, 24sylancl 411 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( A  /  B ) #  0  <->  ( A  /  B )  =/=  0
) )
2623, 25mpbid 146 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  /  B
)  =/=  0 )
27 pcqmul 12261 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
2816, 18, 26, 4, 7, 27syl122anc 1243 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  (
( A  /  B
)  x.  B ) )  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
2915, 28eqtr3d 2206 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  A
)  =  ( ( P  pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) ) )
3029oveq1d 5872 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( P  pCnt  A )  -  ( P 
pCnt  B ) )  =  ( ( ( P 
pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) )  -  ( P  pCnt  B ) ) )
31 pcqcl 12264 . . . . 5  |-  ( ( P  e.  Prime  /\  (
( A  /  B
)  e.  QQ  /\  ( A  /  B
)  =/=  0 ) )  ->  ( P  pCnt  ( A  /  B
) )  e.  ZZ )
3216, 18, 26, 31syl12anc 1232 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  e.  ZZ )
3332zcnd 9339 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  e.  CC )
34 pcqcl 12264 . . . . 5  |-  ( ( P  e.  Prime  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
35343adant2 1012 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  ZZ )
3635zcnd 9339 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  B
)  e.  CC )
3733, 36pncand 8235 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( ( P 
pCnt  ( A  /  B ) )  +  ( P  pCnt  B
) )  -  ( P  pCnt  B ) )  =  ( P  pCnt  ( A  /  B ) ) )
3830, 37eqtr2d 2205 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  /  B ) )  =  ( ( P 
pCnt  A )  -  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 974    = wceq 1349    e. wcel 2142    =/= wne 2341   class class class wbr 3990  (class class class)co 5857   CCcc 7776   0cc0 7778    + caddc 7781    x. cmul 7783    - cmin 8094   # cap 8504    / cdiv 8593   ZZcz 9216   QQcq 9582   Primecprime 12065    pCnt cpc 12242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573  ax-cnex 7869  ax-resscn 7870  ax-1cn 7871  ax-1re 7872  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-mulrcl 7877  ax-addcom 7878  ax-mulcom 7879  ax-addass 7880  ax-mulass 7881  ax-distr 7882  ax-i2m1 7883  ax-0lt1 7884  ax-1rid 7885  ax-0id 7886  ax-rnegex 7887  ax-precex 7888  ax-cnre 7889  ax-pre-ltirr 7890  ax-pre-ltwlin 7891  ax-pre-lttrn 7892  ax-pre-apti 7893  ax-pre-ltadd 7894  ax-pre-mulgt0 7895  ax-pre-mulext 7896  ax-arch 7897  ax-caucvg 7898
This theorem depends on definitions:  df-bi 116  df-dc 831  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-nel 2437  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-if 3528  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-po 4282  df-iso 4283  df-iord 4352  df-on 4354  df-ilim 4355  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-isom 5209  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-recs 6288  df-frec 6374  df-1o 6399  df-2o 6400  df-er 6517  df-en 6723  df-sup 6965  df-inf 6966  df-pnf 7960  df-mnf 7961  df-xr 7962  df-ltxr 7963  df-le 7964  df-sub 8096  df-neg 8097  df-reap 8498  df-ap 8505  df-div 8594  df-inn 8883  df-2 8941  df-3 8942  df-4 8943  df-n0 9140  df-z 9217  df-uz 9492  df-q 9583  df-rp 9615  df-fz 9970  df-fzo 10103  df-fl 10230  df-mod 10283  df-seqfrec 10406  df-exp 10480  df-cj 10810  df-re 10811  df-im 10812  df-rsqrt 10966  df-abs 10967  df-dvds 11754  df-gcd 11902  df-prm 12066  df-pc 12243
This theorem is referenced by:  pcrec  12266
  Copyright terms: Public domain W3C validator