ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blss2ps Unicode version

Theorem blss2ps 14953
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blss2ps  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )

Proof of Theorem blss2ps
StepHypRef Expression
1 simpl1 1003 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  D  e.  (PsMet `  X
) )
2 simpl2 1004 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  P  e.  X )
3 simpl3 1005 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  Q  e.  X )
4 simpr1 1006 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  R  e.  RR )
54rexrd 8142 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  R  e.  RR* )
6 simpr2 1007 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  S  e.  RR )
76rexrd 8142 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  ->  S  e.  RR* )
86, 4resubcld 8473 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( S  -  R
)  e.  RR )
9 simpr3 1008 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  <_  ( S  -  R ) )
10 psmetlecl 14881 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( P  e.  X  /\  Q  e.  X )  /\  ( ( S  -  R )  e.  RR  /\  ( P D Q )  <_  ( S  -  R ) ) )  ->  ( P D Q )  e.  RR )
111, 2, 3, 8, 9, 10syl122anc 1259 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  e.  RR )
12 rexsub 9995 . . . 4  |-  ( ( S  e.  RR  /\  R  e.  RR )  ->  ( S +e  -e R )  =  ( S  -  R
) )
136, 4, 12syl2anc 411 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( S +e  -e R )  =  ( S  -  R
) )
149, 13breqtrrd 4079 . 2  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P D Q )  <_  ( S +e  -e R ) )
151, 2, 3, 5, 7, 11, 14xblss2ps 14951 1  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR  /\  S  e.  RR  /\  ( P D Q )  <_ 
( S  -  R
) ) )  -> 
( P ( ball `  D ) R ) 
C_  ( Q (
ball `  D ) S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177    C_ wss 3170   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   RRcr 7944    <_ cle 8128    - cmin 8263    -ecxne 9911   +ecxad 9912  PsMetcpsmet 14372   ballcbl 14375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-map 6750  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-2 9115  df-xneg 9914  df-xadd 9915  df-psmet 14380  df-bl 14383
This theorem is referenced by:  blssps  14974
  Copyright terms: Public domain W3C validator