ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facubnd Unicode version

Theorem facubnd 10623
Description: An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
facubnd  |-  ( N  e.  NN0  ->  ( ! `
 N )  <_ 
( N ^ N
) )

Proof of Theorem facubnd
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5469 . . . 4  |-  ( m  =  0  ->  ( ! `  m )  =  ( ! ` 
0 ) )
2 fac0 10606 . . . 4  |-  ( ! `
 0 )  =  1
31, 2eqtrdi 2206 . . 3  |-  ( m  =  0  ->  ( ! `  m )  =  1 )
4 id 19 . . . . 5  |-  ( m  =  0  ->  m  =  0 )
54, 4oveq12d 5843 . . . 4  |-  ( m  =  0  ->  (
m ^ m )  =  ( 0 ^ 0 ) )
6 0exp0e1 10428 . . . 4  |-  ( 0 ^ 0 )  =  1
75, 6eqtrdi 2206 . . 3  |-  ( m  =  0  ->  (
m ^ m )  =  1 )
83, 7breq12d 3979 . 2  |-  ( m  =  0  ->  (
( ! `  m
)  <_  ( m ^ m )  <->  1  <_  1 ) )
9 fveq2 5469 . . 3  |-  ( m  =  k  ->  ( ! `  m )  =  ( ! `  k ) )
10 id 19 . . . 4  |-  ( m  =  k  ->  m  =  k )
1110, 10oveq12d 5843 . . 3  |-  ( m  =  k  ->  (
m ^ m )  =  ( k ^
k ) )
129, 11breq12d 3979 . 2  |-  ( m  =  k  ->  (
( ! `  m
)  <_  ( m ^ m )  <->  ( ! `  k )  <_  (
k ^ k ) ) )
13 fveq2 5469 . . 3  |-  ( m  =  ( k  +  1 )  ->  ( ! `  m )  =  ( ! `  ( k  +  1 ) ) )
14 id 19 . . . 4  |-  ( m  =  ( k  +  1 )  ->  m  =  ( k  +  1 ) )
1514, 14oveq12d 5843 . . 3  |-  ( m  =  ( k  +  1 )  ->  (
m ^ m )  =  ( ( k  +  1 ) ^
( k  +  1 ) ) )
1613, 15breq12d 3979 . 2  |-  ( m  =  ( k  +  1 )  ->  (
( ! `  m
)  <_  ( m ^ m )  <->  ( ! `  ( k  +  1 ) )  <_  (
( k  +  1 ) ^ ( k  +  1 ) ) ) )
17 fveq2 5469 . . 3  |-  ( m  =  N  ->  ( ! `  m )  =  ( ! `  N ) )
18 id 19 . . . 4  |-  ( m  =  N  ->  m  =  N )
1918, 18oveq12d 5843 . . 3  |-  ( m  =  N  ->  (
m ^ m )  =  ( N ^ N ) )
2017, 19breq12d 3979 . 2  |-  ( m  =  N  ->  (
( ! `  m
)  <_  ( m ^ m )  <->  ( ! `  N )  <_  ( N ^ N ) ) )
21 1le1 8448 . 2  |-  1  <_  1
22 faccl 10613 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
2322adantr 274 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ! `  k
)  e.  NN )
2423nnred 8847 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ! `  k
)  e.  RR )
25 nn0re 9100 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  RR )
2625adantr 274 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
k  e.  RR )
27 simpl 108 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
k  e.  NN0 )
2826, 27reexpcld 10572 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( k ^ k
)  e.  RR )
29 nn0p1nn 9130 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
3029adantr 274 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( k  +  1 )  e.  NN )
3130nnred 8847 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( k  +  1 )  e.  RR )
3231, 27reexpcld 10572 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ( k  +  1 ) ^ k
)  e.  RR )
33 simpr 109 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ! `  k
)  <_  ( k ^ k ) )
34 nn0ge0 9116 . . . . . . . 8  |-  ( k  e.  NN0  ->  0  <_ 
k )
3534adantr 274 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
0  <_  k )
3626lep1d 8803 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
k  <_  ( k  +  1 ) )
37 leexp1a 10478 . . . . . . 7  |-  ( ( ( k  e.  RR  /\  ( k  +  1 )  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  k  /\  k  <_  ( k  +  1 ) ) )  ->  ( k ^ k )  <_ 
( ( k  +  1 ) ^ k
) )
3826, 31, 27, 35, 36, 37syl32anc 1228 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( k ^ k
)  <_  ( (
k  +  1 ) ^ k ) )
3924, 28, 32, 33, 38letrd 8000 . . . . 5  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ! `  k
)  <_  ( (
k  +  1 ) ^ k ) )
4030nngt0d 8878 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
0  <  ( k  +  1 ) )
41 lemul1 8469 . . . . . 6  |-  ( ( ( ! `  k
)  e.  RR  /\  ( ( k  +  1 ) ^ k
)  e.  RR  /\  ( ( k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) ) )  ->  ( ( ! `  k )  <_  ( ( k  +  1 ) ^ k
)  <->  ( ( ! `
 k )  x.  ( k  +  1 ) )  <_  (
( ( k  +  1 ) ^ k
)  x.  ( k  +  1 ) ) ) )
4224, 32, 31, 40, 41syl112anc 1224 . . . . 5  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ( ! `  k )  <_  (
( k  +  1 ) ^ k )  <-> 
( ( ! `  k )  x.  (
k  +  1 ) )  <_  ( (
( k  +  1 ) ^ k )  x.  ( k  +  1 ) ) ) )
4339, 42mpbid 146 . . . 4  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ( ! `  k )  x.  (
k  +  1 ) )  <_  ( (
( k  +  1 ) ^ k )  x.  ( k  +  1 ) ) )
44 facp1 10608 . . . . 5  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
4544adantr 274 . . . 4  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
4630nncnd 8848 . . . . 5  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( k  +  1 )  e.  CC )
4746, 27expp1d 10556 . . . 4  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ( k  +  1 ) ^ (
k  +  1 ) )  =  ( ( ( k  +  1 ) ^ k )  x.  ( k  +  1 ) ) )
4843, 45, 473brtr4d 3997 . . 3  |-  ( ( k  e.  NN0  /\  ( ! `  k )  <_  ( k ^
k ) )  -> 
( ! `  (
k  +  1 ) )  <_  ( (
k  +  1 ) ^ ( k  +  1 ) ) )
4948ex 114 . 2  |-  ( k  e.  NN0  ->  ( ( ! `  k )  <_  ( k ^
k )  ->  ( ! `  ( k  +  1 ) )  <_  ( ( k  +  1 ) ^
( k  +  1 ) ) ) )
508, 12, 16, 20, 21, 49nn0ind 9279 1  |-  ( N  e.  NN0  ->  ( ! `
 N )  <_ 
( N ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   class class class wbr 3966   ` cfv 5171  (class class class)co 5825   RRcr 7732   0cc0 7733   1c1 7734    + caddc 7736    x. cmul 7738    < clt 7913    <_ cle 7914   NNcn 8834   NN0cn0 9091   ^cexp 10422   !cfa 10603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-n0 9092  df-z 9169  df-uz 9441  df-seqfrec 10349  df-exp 10423  df-fac 10604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator