ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsadd2b Unicode version

Theorem dvdsadd2b 12346
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
dvdsadd2b  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )

Proof of Theorem dvdsadd2b
StepHypRef Expression
1 simpl1 1024 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  e.  ZZ )
2 simpl3l 1076 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  C  e.  ZZ )
3 simpl2 1025 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  B  e.  ZZ )
4 simpl3r 1077 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  C )
5 simpr 110 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  B )
6 dvds2add 12331 . . . 4  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  ||  C  /\  A  ||  B )  ->  A  ||  ( C  +  B )
) )
76imp 124 . . 3  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  ||  C  /\  A  ||  B ) )  ->  A  ||  ( C  +  B )
)
81, 2, 3, 4, 5, 7syl32anc 1279 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  ( C  +  B
) )
9 simpl1 1024 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  e.  ZZ )
10 simp3l 1049 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  C  e.  ZZ )
11 simp2 1022 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  B  e.  ZZ )
12 zaddcl 9482 . . . . . 6  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  +  B
)  e.  ZZ )
1310, 11, 12syl2anc 411 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( C  +  B
)  e.  ZZ )
1413adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  ( C  +  B )  e.  ZZ )
1510znegcld 9567 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  -u C  e.  ZZ )
1615adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  -u C  e.  ZZ )
17 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  ( C  +  B
) )
18 simpl3r 1077 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  C )
19 simpl3l 1076 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  C  e.  ZZ )
20 dvdsnegb 12314 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  C  <->  A 
||  -u C ) )
219, 19, 20syl2anc 411 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  ( A  ||  C  <->  A  ||  -u C
) )
2218, 21mpbid 147 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  -u C )
23 dvds2add 12331 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  -u C  e.  ZZ )  ->  ( ( A 
||  ( C  +  B )  /\  A  ||  -u C )  ->  A  ||  ( ( C  +  B )  +  -u C ) ) )
2423imp 124 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  -u C  e.  ZZ )  /\  ( A  ||  ( C  +  B
)  /\  A  ||  -u C
) )  ->  A  ||  ( ( C  +  B )  +  -u C ) )
259, 14, 16, 17, 22, 24syl32anc 1279 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  ( ( C  +  B )  +  -u C ) )
26 simpl2 1025 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  ZZ )
2712ancoms 268 . . . . . . 7  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( C  +  B
)  e.  ZZ )
2827zcnd 9566 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( C  +  B
)  e.  CC )
29 zcn 9447 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  CC )
3029adantl 277 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  CC )
3128, 30negsubd 8459 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  +  -u C )  =  ( ( C  +  B
)  -  C ) )
32 zcn 9447 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  CC )
3332adantr 276 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  B  e.  CC )
3430, 33pncan2d 8455 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  -  C
)  =  B )
3531, 34eqtrd 2262 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  +  -u C )  =  B )
3626, 19, 35syl2anc 411 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  (
( C  +  B
)  +  -u C
)  =  B )
3725, 36breqtrd 4108 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  B )
388, 37impbida 598 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993    + caddc 7998    - cmin 8313   -ucneg 8314   ZZcz 9442    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-dvds 12294
This theorem is referenced by:  dvdsaddre2b  12347  3dvdsdec  12371  3dvds2dec  12372  2sqlem3  15790
  Copyright terms: Public domain W3C validator