Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsadd2b | Unicode version |
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
Ref | Expression |
---|---|
dvdsadd2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 990 | . . 3 | |
2 | simpl3l 1042 | . . 3 | |
3 | simpl2 991 | . . 3 | |
4 | simpl3r 1043 | . . 3 | |
5 | simpr 109 | . . 3 | |
6 | dvds2add 11765 | . . . 4 | |
7 | 6 | imp 123 | . . 3 |
8 | 1, 2, 3, 4, 5, 7 | syl32anc 1236 | . 2 |
9 | simpl1 990 | . . . 4 | |
10 | simp3l 1015 | . . . . . 6 | |
11 | simp2 988 | . . . . . 6 | |
12 | zaddcl 9231 | . . . . . 6 | |
13 | 10, 11, 12 | syl2anc 409 | . . . . 5 |
14 | 13 | adantr 274 | . . . 4 |
15 | 10 | znegcld 9315 | . . . . 5 |
16 | 15 | adantr 274 | . . . 4 |
17 | simpr 109 | . . . 4 | |
18 | simpl3r 1043 | . . . . 5 | |
19 | simpl3l 1042 | . . . . . 6 | |
20 | dvdsnegb 11748 | . . . . . 6 | |
21 | 9, 19, 20 | syl2anc 409 | . . . . 5 |
22 | 18, 21 | mpbid 146 | . . . 4 |
23 | dvds2add 11765 | . . . . 5 | |
24 | 23 | imp 123 | . . . 4 |
25 | 9, 14, 16, 17, 22, 24 | syl32anc 1236 | . . 3 |
26 | simpl2 991 | . . . 4 | |
27 | 12 | ancoms 266 | . . . . . . 7 |
28 | 27 | zcnd 9314 | . . . . . 6 |
29 | zcn 9196 | . . . . . . 7 | |
30 | 29 | adantl 275 | . . . . . 6 |
31 | 28, 30 | negsubd 8215 | . . . . 5 |
32 | zcn 9196 | . . . . . . 7 | |
33 | 32 | adantr 274 | . . . . . 6 |
34 | 30, 33 | pncan2d 8211 | . . . . 5 |
35 | 31, 34 | eqtrd 2198 | . . . 4 |
36 | 26, 19, 35 | syl2anc 409 | . . 3 |
37 | 25, 36 | breqtrd 4008 | . 2 |
38 | 8, 37 | impbida 586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 caddc 7756 cmin 8069 cneg 8070 cz 9191 cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-dvds 11728 |
This theorem is referenced by: 3dvdsdec 11802 3dvds2dec 11803 2sqlem3 13593 |
Copyright terms: Public domain | W3C validator |