ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsadd2b Unicode version

Theorem dvdsadd2b 11780
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
dvdsadd2b  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )

Proof of Theorem dvdsadd2b
StepHypRef Expression
1 simpl1 990 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  e.  ZZ )
2 simpl3l 1042 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  C  e.  ZZ )
3 simpl2 991 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  B  e.  ZZ )
4 simpl3r 1043 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  C )
5 simpr 109 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  B )
6 dvds2add 11765 . . . 4  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  ||  C  /\  A  ||  B )  ->  A  ||  ( C  +  B )
) )
76imp 123 . . 3  |-  ( ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  ||  C  /\  A  ||  B ) )  ->  A  ||  ( C  +  B )
)
81, 2, 3, 4, 5, 7syl32anc 1236 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  B )  ->  A  ||  ( C  +  B
) )
9 simpl1 990 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  e.  ZZ )
10 simp3l 1015 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  C  e.  ZZ )
11 simp2 988 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  B  e.  ZZ )
12 zaddcl 9231 . . . . . 6  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  +  B
)  e.  ZZ )
1310, 11, 12syl2anc 409 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( C  +  B
)  e.  ZZ )
1413adantr 274 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  ( C  +  B )  e.  ZZ )
1510znegcld 9315 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  ->  -u C  e.  ZZ )
1615adantr 274 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  -u C  e.  ZZ )
17 simpr 109 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  ( C  +  B
) )
18 simpl3r 1043 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  C )
19 simpl3l 1042 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  C  e.  ZZ )
20 dvdsnegb 11748 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  C  <->  A 
||  -u C ) )
219, 19, 20syl2anc 409 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  ( A  ||  C  <->  A  ||  -u C
) )
2218, 21mpbid 146 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  -u C )
23 dvds2add 11765 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  -u C  e.  ZZ )  ->  ( ( A 
||  ( C  +  B )  /\  A  ||  -u C )  ->  A  ||  ( ( C  +  B )  +  -u C ) ) )
2423imp 123 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( C  +  B
)  e.  ZZ  /\  -u C  e.  ZZ )  /\  ( A  ||  ( C  +  B
)  /\  A  ||  -u C
) )  ->  A  ||  ( ( C  +  B )  +  -u C ) )
259, 14, 16, 17, 22, 24syl32anc 1236 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  ( ( C  +  B )  +  -u C ) )
26 simpl2 991 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  ZZ )
2712ancoms 266 . . . . . . 7  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( C  +  B
)  e.  ZZ )
2827zcnd 9314 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( C  +  B
)  e.  CC )
29 zcn 9196 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  CC )
3029adantl 275 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  CC )
3128, 30negsubd 8215 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  +  -u C )  =  ( ( C  +  B
)  -  C ) )
32 zcn 9196 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  CC )
3332adantr 274 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  B  e.  CC )
3430, 33pncan2d 8211 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  -  C
)  =  B )
3531, 34eqtrd 2198 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( C  +  B )  +  -u C )  =  B )
3626, 19, 35syl2anc 409 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  (
( C  +  B
)  +  -u C
)  =  B )
3725, 36breqtrd 4008 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  A  ||  B )
388, 37impbida 586 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751    + caddc 7756    - cmin 8069   -ucneg 8070   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by:  3dvdsdec  11802  3dvds2dec  11803  2sqlem3  13593
  Copyright terms: Public domain W3C validator