ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodup Unicode version

Theorem modaddmodup 10387
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodup  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  (
( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod 
M ) ) )

Proof of Theorem modaddmodup
StepHypRef Expression
1 elfzoelz 10147 . . . . . . 7  |-  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  B  e.  ZZ )
21adantr 276 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  B  e.  ZZ )
3 zmodcl 10344 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( A  mod  M
)  e.  NN0 )
43adantl 277 . . . . . . 7  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( A  mod  M
)  e.  NN0 )
54nn0zd 9373 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( A  mod  M
)  e.  ZZ )
62, 5zaddcld 9379 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( B  +  ( A  mod  M ) )  e.  ZZ )
7 zq 9626 . . . . 5  |-  ( ( B  +  ( A  mod  M ) )  e.  ZZ  ->  ( B  +  ( A  mod  M ) )  e.  QQ )
86, 7syl 14 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( B  +  ( A  mod  M ) )  e.  QQ )
9 simprr 531 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  e.  NN )
10 nnq 9633 . . . . 5  |-  ( M  e.  NN  ->  M  e.  QQ )
119, 10syl 14 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  e.  QQ )
129nngt0d 8963 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
0  <  M )
13 elfzole1 10155 . . . . . 6  |-  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  ( M  -  ( A  mod  M ) )  <_  B )
1413adantr 276 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( M  -  ( A  mod  M ) )  <_  B )
159nnred 8932 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  e.  RR )
163nn0red 9230 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( A  mod  M
)  e.  RR )
1716adantl 277 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( A  mod  M
)  e.  RR )
181zred 9375 . . . . . . 7  |-  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  B  e.  RR )
1918adantr 276 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  B  e.  RR )
2015, 17, 19lesubaddd 8499 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( ( M  -  ( A  mod  M ) )  <_  B  <->  M  <_  ( B  +  ( A  mod  M ) ) ) )
2114, 20mpbid 147 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  <_  ( B  +  ( A  mod  M ) ) )
22 elfzolt2 10156 . . . . . . 7  |-  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  B  <  M
)
2322adantr 276 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  B  <  M )
24 zq 9626 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  QQ )
2524ad2antrl 490 . . . . . . 7  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  A  e.  QQ )
26 modqlt 10333 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  mod  M )  < 
M )
2725, 11, 12, 26syl3anc 1238 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( A  mod  M
)  <  M )
2819, 17, 15, 15, 23, 27lt2addd 8524 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( B  +  ( A  mod  M ) )  <  ( M  +  M ) )
299nncnd 8933 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  e.  CC )
30292timesd 9161 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( 2  x.  M
)  =  ( M  +  M ) )
3128, 30breqtrrd 4032 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( B  +  ( A  mod  M ) )  <  ( 2  x.  M ) )
32 q2submod 10385 . . . 4  |-  ( ( ( ( B  +  ( A  mod  M ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( M  <_  ( B  +  ( A  mod  M ) )  /\  ( B  +  ( A  mod  M ) )  <  (
2  x.  M ) ) )  ->  (
( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  ( A  mod  M ) )  -  M
) )
338, 11, 12, 21, 31, 32syl32anc 1246 . . 3  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  ( A  mod  M ) )  -  M
) )
34 zq 9626 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  QQ )
352, 34syl 14 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  B  e.  QQ )
36 modqadd2mod 10374 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3725, 35, 11, 12, 36syl22anc 1239 . . 3  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3833, 37eqtr3d 2212 . 2  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( ( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod 
M ) )
3938expcom 116 1  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  (
( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod 
M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   RRcr 7810   0cc0 7811    + caddc 7814    x. cmul 7816    < clt 7992    <_ cle 7993    - cmin 8128   NNcn 8919   2c2 8970   NN0cn0 9176   ZZcz 9253   QQcq 9619  ..^cfzo 10142    mod cmo 10322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator