ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodup Unicode version

Theorem modaddmodup 10418
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodup  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  (
( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod 
M ) ) )

Proof of Theorem modaddmodup
StepHypRef Expression
1 elfzoelz 10177 . . . . . . 7  |-  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  B  e.  ZZ )
21adantr 276 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  B  e.  ZZ )
3 zmodcl 10375 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( A  mod  M
)  e.  NN0 )
43adantl 277 . . . . . . 7  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( A  mod  M
)  e.  NN0 )
54nn0zd 9403 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( A  mod  M
)  e.  ZZ )
62, 5zaddcld 9409 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( B  +  ( A  mod  M ) )  e.  ZZ )
7 zq 9656 . . . . 5  |-  ( ( B  +  ( A  mod  M ) )  e.  ZZ  ->  ( B  +  ( A  mod  M ) )  e.  QQ )
86, 7syl 14 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( B  +  ( A  mod  M ) )  e.  QQ )
9 simprr 531 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  e.  NN )
10 nnq 9663 . . . . 5  |-  ( M  e.  NN  ->  M  e.  QQ )
119, 10syl 14 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  e.  QQ )
129nngt0d 8993 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
0  <  M )
13 elfzole1 10185 . . . . . 6  |-  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  ( M  -  ( A  mod  M ) )  <_  B )
1413adantr 276 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( M  -  ( A  mod  M ) )  <_  B )
159nnred 8962 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  e.  RR )
163nn0red 9260 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( A  mod  M
)  e.  RR )
1716adantl 277 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( A  mod  M
)  e.  RR )
181zred 9405 . . . . . . 7  |-  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  B  e.  RR )
1918adantr 276 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  B  e.  RR )
2015, 17, 19lesubaddd 8529 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( ( M  -  ( A  mod  M ) )  <_  B  <->  M  <_  ( B  +  ( A  mod  M ) ) ) )
2114, 20mpbid 147 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  <_  ( B  +  ( A  mod  M ) ) )
22 elfzolt2 10186 . . . . . . 7  |-  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  B  <  M
)
2322adantr 276 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  B  <  M )
24 zq 9656 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  QQ )
2524ad2antrl 490 . . . . . . 7  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  A  e.  QQ )
26 modqlt 10364 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( A  mod  M )  < 
M )
2725, 11, 12, 26syl3anc 1249 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( A  mod  M
)  <  M )
2819, 17, 15, 15, 23, 27lt2addd 8554 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( B  +  ( A  mod  M ) )  <  ( M  +  M ) )
299nncnd 8963 . . . . . 6  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  M  e.  CC )
30292timesd 9191 . . . . 5  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( 2  x.  M
)  =  ( M  +  M ) )
3128, 30breqtrrd 4046 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( B  +  ( A  mod  M ) )  <  ( 2  x.  M ) )
32 q2submod 10416 . . . 4  |-  ( ( ( ( B  +  ( A  mod  M ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( M  <_  ( B  +  ( A  mod  M ) )  /\  ( B  +  ( A  mod  M ) )  <  (
2  x.  M ) ) )  ->  (
( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  ( A  mod  M ) )  -  M
) )
338, 11, 12, 21, 31, 32syl32anc 1257 . . 3  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  ( A  mod  M ) )  -  M
) )
34 zq 9656 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  QQ )
352, 34syl 14 . . . 4  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  ->  B  e.  QQ )
36 modqadd2mod 10405 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3725, 35, 11, 12, 36syl22anc 1250 . . 3  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod 
M ) )
3833, 37eqtr3d 2224 . 2  |-  ( ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  /\  ( A  e.  ZZ  /\  M  e.  NN ) )  -> 
( ( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod 
M ) )
3938expcom 116 1  |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  (
( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod 
M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5896   RRcr 7840   0cc0 7841    + caddc 7844    x. cmul 7846    < clt 8022    <_ cle 8023    - cmin 8158   NNcn 8949   2c2 9000   NN0cn0 9206   ZZcz 9283   QQcq 9649  ..^cfzo 10172    mod cmo 10353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator