| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modaddmodup | Unicode version | ||
| Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
| Ref | Expression |
|---|---|
| modaddmodup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz 10268 |
. . . . . . 7
| |
| 2 | 1 | adantr 276 |
. . . . . 6
|
| 3 | zmodcl 10487 |
. . . . . . . 8
| |
| 4 | 3 | adantl 277 |
. . . . . . 7
|
| 5 | 4 | nn0zd 9492 |
. . . . . 6
|
| 6 | 2, 5 | zaddcld 9498 |
. . . . 5
|
| 7 | zq 9746 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | simprr 531 |
. . . . 5
| |
| 10 | nnq 9753 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 9 | nngt0d 9079 |
. . . 4
|
| 13 | elfzole1 10277 |
. . . . . 6
| |
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | 9 | nnred 9048 |
. . . . . 6
|
| 16 | 3 | nn0red 9348 |
. . . . . . 7
|
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | 1 | zred 9494 |
. . . . . . 7
|
| 19 | 18 | adantr 276 |
. . . . . 6
|
| 20 | 15, 17, 19 | lesubaddd 8614 |
. . . . 5
|
| 21 | 14, 20 | mpbid 147 |
. . . 4
|
| 22 | elfzolt2 10278 |
. . . . . . 7
| |
| 23 | 22 | adantr 276 |
. . . . . 6
|
| 24 | zq 9746 |
. . . . . . . 8
| |
| 25 | 24 | ad2antrl 490 |
. . . . . . 7
|
| 26 | modqlt 10476 |
. . . . . . 7
| |
| 27 | 25, 11, 12, 26 | syl3anc 1249 |
. . . . . 6
|
| 28 | 19, 17, 15, 15, 23, 27 | lt2addd 8639 |
. . . . 5
|
| 29 | 9 | nncnd 9049 |
. . . . . 6
|
| 30 | 29 | 2timesd 9279 |
. . . . 5
|
| 31 | 28, 30 | breqtrrd 4071 |
. . . 4
|
| 32 | q2submod 10528 |
. . . 4
| |
| 33 | 8, 11, 12, 21, 31, 32 | syl32anc 1257 |
. . 3
|
| 34 | zq 9746 |
. . . . 5
| |
| 35 | 2, 34 | syl 14 |
. . . 4
|
| 36 | modqadd2mod 10517 |
. . . 4
| |
| 37 | 25, 35, 11, 12, 36 | syl22anc 1250 |
. . 3
|
| 38 | 33, 37 | eqtr3d 2239 |
. 2
|
| 39 | 38 | expcom 116 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-fl 10411 df-mod 10466 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |