ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioom Unicode version

Theorem ioom 10350
Description: An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.)
Assertion
Ref Expression
ioom  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  x  e.  ( A (,) B )  <-> 
A  <  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem ioom
StepHypRef Expression
1 elioo3g 9985 . . . . . . . 8  |-  ( x  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  /\  ( A  <  x  /\  x  <  B ) ) )
21biimpi 120 . . . . . . 7  |-  ( x  e.  ( A (,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR* )  /\  ( A  <  x  /\  x  <  B ) ) )
32simpld 112 . . . . . 6  |-  ( x  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* ) )
43simp1d 1011 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  A  e.  RR* )
53simp3d 1013 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  x  e.  RR* )
63simp2d 1012 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  B  e.  RR* )
72simprd 114 . . . . . 6  |-  ( x  e.  ( A (,) B )  ->  ( A  <  x  /\  x  <  B ) )
87simpld 112 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  A  <  x )
97simprd 114 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  x  <  B )
104, 5, 6, 8, 9xrlttrd 9884 . . . 4  |-  ( x  e.  ( A (,) B )  ->  A  <  B )
1110a1i 9 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A (,) B )  ->  A  <  B ) )
1211exlimdv 1833 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  x  e.  ( A (,) B )  ->  A  <  B
) )
13 qbtwnxr 10347 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
14 df-rex 2481 . . . . 5  |-  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  <->  E. x
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )
1513, 14sylib 122 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )
16 simpl1 1002 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  A  e.  RR* )
17 simpl2 1003 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  B  e.  RR* )
18 qre 9699 . . . . . . . . 9  |-  ( x  e.  QQ  ->  x  e.  RR )
1918ad2antrl 490 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  x  e.  RR )
2019rexrd 8076 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  x  e.  RR* )
21 simprrl 539 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  A  <  x )
22 simprrr 540 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  x  <  B )
231biimpri 133 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR* )  /\  ( A  <  x  /\  x  <  B ) )  ->  x  e.  ( A (,) B ) )
2416, 17, 20, 21, 22, 23syl32anc 1257 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  x  e.  ( A (,) B ) )
2524ex 115 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  x  e.  ( A (,) B ) ) )
2625eximdv 1894 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( E. x ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  E. x  x  e.  ( A (,) B ) ) )
2715, 26mpd 13 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  x  e.  ( A (,) B ) )
28273expia 1207 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  x  e.  ( A (,) B ) ) )
2912, 28impbid 129 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  x  e.  ( A (,) B )  <-> 
A  <  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   E.wex 1506    e. wcel 2167   E.wrex 2476   class class class wbr 4033  (class class class)co 5922   RRcr 7878   RR*cxr 8060    < clt 8061   QQcq 9693   (,)cioo 9963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ioo 9967
This theorem is referenced by:  tgioo  14790
  Copyright terms: Public domain W3C validator