ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioom Unicode version

Theorem ioom 10480
Description: An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.)
Assertion
Ref Expression
ioom  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  x  e.  ( A (,) B )  <-> 
A  <  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem ioom
StepHypRef Expression
1 elioo3g 10106 . . . . . . . 8  |-  ( x  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  /\  ( A  <  x  /\  x  <  B ) ) )
21biimpi 120 . . . . . . 7  |-  ( x  e.  ( A (,) B )  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR* )  /\  ( A  <  x  /\  x  <  B ) ) )
32simpld 112 . . . . . 6  |-  ( x  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* ) )
43simp1d 1033 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  A  e.  RR* )
53simp3d 1035 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  x  e.  RR* )
63simp2d 1034 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  B  e.  RR* )
72simprd 114 . . . . . 6  |-  ( x  e.  ( A (,) B )  ->  ( A  <  x  /\  x  <  B ) )
87simpld 112 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  A  <  x )
97simprd 114 . . . . 5  |-  ( x  e.  ( A (,) B )  ->  x  <  B )
104, 5, 6, 8, 9xrlttrd 10005 . . . 4  |-  ( x  e.  ( A (,) B )  ->  A  <  B )
1110a1i 9 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A (,) B )  ->  A  <  B ) )
1211exlimdv 1865 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  x  e.  ( A (,) B )  ->  A  <  B
) )
13 qbtwnxr 10477 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
14 df-rex 2514 . . . . 5  |-  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  <->  E. x
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )
1513, 14sylib 122 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )
16 simpl1 1024 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  A  e.  RR* )
17 simpl2 1025 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  B  e.  RR* )
18 qre 9820 . . . . . . . . 9  |-  ( x  e.  QQ  ->  x  e.  RR )
1918ad2antrl 490 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  x  e.  RR )
2019rexrd 8196 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  x  e.  RR* )
21 simprrl 539 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  A  <  x )
22 simprrr 540 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  x  <  B )
231biimpri 133 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  RR* )  /\  ( A  <  x  /\  x  <  B ) )  ->  x  e.  ( A (,) B ) )
2416, 17, 20, 21, 22, 23syl32anc 1279 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) ) )  ->  x  e.  ( A (,) B ) )
2524ex 115 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  x  e.  ( A (,) B ) ) )
2625eximdv 1926 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( E. x ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  E. x  x  e.  ( A (,) B ) ) )
2715, 26mpd 13 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  x  e.  ( A (,) B ) )
28273expia 1229 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  x  e.  ( A (,) B ) ) )
2912, 28impbid 129 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  x  e.  ( A (,) B )  <-> 
A  <  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   E.wex 1538    e. wcel 2200   E.wrex 2509   class class class wbr 4083  (class class class)co 6001   RRcr 7998   RR*cxr 8180    < clt 8181   QQcq 9814   (,)cioo 10084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ioo 10088
This theorem is referenced by:  tgioo  15228
  Copyright terms: Public domain W3C validator