Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashgcdlem | Unicode version |
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
hashgcdlem.a | ..^ |
hashgcdlem.b | ..^ |
hashgcdlem.f |
Ref | Expression |
---|---|
hashgcdlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashgcdlem.f | . 2 | |
2 | oveq1 5849 | . . . . 5 | |
3 | 2 | eqeq1d 2174 | . . . 4 |
4 | hashgcdlem.a | . . . 4 ..^ | |
5 | 3, 4 | elrab2 2885 | . . 3 ..^ |
6 | elfzonn0 10121 | . . . . . . 7 ..^ | |
7 | 6 | ad2antrl 482 | . . . . . 6 ..^ |
8 | nnnn0 9121 | . . . . . . . 8 | |
9 | 8 | 3ad2ant2 1009 | . . . . . . 7 |
10 | 9 | adantr 274 | . . . . . 6 ..^ |
11 | 7, 10 | nn0mulcld 9172 | . . . . 5 ..^ |
12 | simpl1 990 | . . . . 5 ..^ | |
13 | elfzolt2 10091 | . . . . . . 7 ..^ | |
14 | 13 | ad2antrl 482 | . . . . . 6 ..^ |
15 | elfzoelz 10082 | . . . . . . . . 9 ..^ | |
16 | 15 | ad2antrl 482 | . . . . . . . 8 ..^ |
17 | 16 | zred 9313 | . . . . . . 7 ..^ |
18 | nnre 8864 | . . . . . . . . 9 | |
19 | 18 | 3ad2ant1 1008 | . . . . . . . 8 |
20 | 19 | adantr 274 | . . . . . . 7 ..^ |
21 | nnre 8864 | . . . . . . . . . 10 | |
22 | nngt0 8882 | . . . . . . . . . 10 | |
23 | 21, 22 | jca 304 | . . . . . . . . 9 |
24 | 23 | 3ad2ant2 1009 | . . . . . . . 8 |
25 | 24 | adantr 274 | . . . . . . 7 ..^ |
26 | ltmuldiv 8769 | . . . . . . 7 | |
27 | 17, 20, 25, 26 | syl3anc 1228 | . . . . . 6 ..^ |
28 | 14, 27 | mpbird 166 | . . . . 5 ..^ |
29 | elfzo0 10117 | . . . . 5 ..^ | |
30 | 11, 12, 28, 29 | syl3anbrc 1171 | . . . 4 ..^ ..^ |
31 | nncn 8865 | . . . . . . . . . 10 | |
32 | 31 | 3ad2ant1 1008 | . . . . . . . . 9 |
33 | nncn 8865 | . . . . . . . . . 10 | |
34 | 33 | 3ad2ant2 1009 | . . . . . . . . 9 |
35 | nnap0 8886 | . . . . . . . . . 10 # | |
36 | 35 | 3ad2ant2 1009 | . . . . . . . . 9 # |
37 | 32, 34, 36 | divcanap1d 8687 | . . . . . . . 8 |
38 | 37 | adantr 274 | . . . . . . 7 ..^ |
39 | 38 | eqcomd 2171 | . . . . . 6 ..^ |
40 | 39 | oveq2d 5858 | . . . . 5 ..^ |
41 | nndivdvds 11736 | . . . . . . . . 9 | |
42 | 41 | biimp3a 1335 | . . . . . . . 8 |
43 | 42 | nnzd 9312 | . . . . . . 7 |
44 | 43 | adantr 274 | . . . . . 6 ..^ |
45 | mulgcdr 11951 | . . . . . 6 | |
46 | 16, 44, 10, 45 | syl3anc 1228 | . . . . 5 ..^ |
47 | simprr 522 | . . . . . . 7 ..^ | |
48 | 47 | oveq1d 5857 | . . . . . 6 ..^ |
49 | 34 | mulid2d 7917 | . . . . . . 7 |
50 | 49 | adantr 274 | . . . . . 6 ..^ |
51 | 48, 50 | eqtrd 2198 | . . . . 5 ..^ |
52 | 40, 46, 51 | 3eqtrd 2202 | . . . 4 ..^ |
53 | oveq1 5849 | . . . . . 6 | |
54 | 53 | eqeq1d 2174 | . . . . 5 |
55 | hashgcdlem.b | . . . . 5 ..^ | |
56 | 54, 55 | elrab2 2885 | . . . 4 ..^ |
57 | 30, 52, 56 | sylanbrc 414 | . . 3 ..^ |
58 | 5, 57 | sylan2b 285 | . 2 |
59 | oveq1 5849 | . . . . 5 | |
60 | 59 | eqeq1d 2174 | . . . 4 |
61 | 60, 55 | elrab2 2885 | . . 3 ..^ |
62 | simprr 522 | . . . . . . . 8 ..^ | |
63 | elfzoelz 10082 | . . . . . . . . . . 11 ..^ | |
64 | 63 | ad2antrl 482 | . . . . . . . . . 10 ..^ |
65 | simpl1 990 | . . . . . . . . . . 11 ..^ | |
66 | 65 | nnzd 9312 | . . . . . . . . . 10 ..^ |
67 | gcddvds 11896 | . . . . . . . . . 10 | |
68 | 64, 66, 67 | syl2anc 409 | . . . . . . . . 9 ..^ |
69 | 68 | simpld 111 | . . . . . . . 8 ..^ |
70 | 62, 69 | eqbrtrrd 4006 | . . . . . . 7 ..^ |
71 | nnz 9210 | . . . . . . . . . 10 | |
72 | 71 | 3ad2ant2 1009 | . . . . . . . . 9 |
73 | 72 | adantr 274 | . . . . . . . 8 ..^ |
74 | nnne0 8885 | . . . . . . . . . 10 | |
75 | 74 | 3ad2ant2 1009 | . . . . . . . . 9 |
76 | 75 | adantr 274 | . . . . . . . 8 ..^ |
77 | dvdsval2 11730 | . . . . . . . 8 | |
78 | 73, 76, 64, 77 | syl3anc 1228 | . . . . . . 7 ..^ |
79 | 70, 78 | mpbid 146 | . . . . . 6 ..^ |
80 | elfzofz 10097 | . . . . . . . . 9 ..^ | |
81 | 80 | ad2antrl 482 | . . . . . . . 8 ..^ |
82 | elfznn0 10049 | . . . . . . . 8 | |
83 | nn0re 9123 | . . . . . . . . 9 | |
84 | nn0ge0 9139 | . . . . . . . . 9 | |
85 | 83, 84 | jca 304 | . . . . . . . 8 |
86 | 81, 82, 85 | 3syl 17 | . . . . . . 7 ..^ |
87 | 24 | adantr 274 | . . . . . . 7 ..^ |
88 | divge0 8768 | . . . . . . 7 | |
89 | 86, 87, 88 | syl2anc 409 | . . . . . 6 ..^ |
90 | elnn0z 9204 | . . . . . 6 | |
91 | 79, 89, 90 | sylanbrc 414 | . . . . 5 ..^ |
92 | 42 | adantr 274 | . . . . 5 ..^ |
93 | elfzolt2 10091 | . . . . . . 7 ..^ | |
94 | 93 | ad2antrl 482 | . . . . . 6 ..^ |
95 | 64 | zred 9313 | . . . . . . 7 ..^ |
96 | 19 | adantr 274 | . . . . . . 7 ..^ |
97 | ltdiv1 8763 | . . . . . . 7 | |
98 | 95, 96, 87, 97 | syl3anc 1228 | . . . . . 6 ..^ |
99 | 94, 98 | mpbid 146 | . . . . 5 ..^ |
100 | elfzo0 10117 | . . . . 5 ..^ | |
101 | 91, 92, 99, 100 | syl3anbrc 1171 | . . . 4 ..^ ..^ |
102 | 62 | oveq1d 5857 | . . . . 5 ..^ |
103 | simpl2 991 | . . . . . 6 ..^ | |
104 | simpl3 992 | . . . . . 6 ..^ | |
105 | gcddiv 11952 | . . . . . 6 | |
106 | 64, 66, 103, 70, 104, 105 | syl32anc 1236 | . . . . 5 ..^ |
107 | 34, 36 | dividapd 8682 | . . . . . 6 |
108 | 107 | adantr 274 | . . . . 5 ..^ |
109 | 102, 106, 108 | 3eqtr3d 2206 | . . . 4 ..^ |
110 | oveq1 5849 | . . . . . 6 | |
111 | 110 | eqeq1d 2174 | . . . . 5 |
112 | 111, 4 | elrab2 2885 | . . . 4 ..^ |
113 | 101, 109, 112 | sylanbrc 414 | . . 3 ..^ |
114 | 61, 113 | sylan2b 285 | . 2 |
115 | 5 | simplbi 272 | . . . 4 ..^ |
116 | 61 | simplbi 272 | . . . 4 ..^ |
117 | 115, 116 | anim12i 336 | . . 3 ..^ ..^ |
118 | 63 | ad2antll 483 | . . . . . . . 8 ..^ ..^ |
119 | 118 | zcnd 9314 | . . . . . . 7 ..^ ..^ |
120 | 34 | adantr 274 | . . . . . . 7 ..^ ..^ |
121 | 36 | adantr 274 | . . . . . . 7 ..^ ..^ # |
122 | 119, 120, 121 | divcanap1d 8687 | . . . . . 6 ..^ ..^ |
123 | 122 | eqcomd 2171 | . . . . 5 ..^ ..^ |
124 | oveq1 5849 | . . . . . 6 | |
125 | 124 | eqeq2d 2177 | . . . . 5 |
126 | 123, 125 | syl5ibrcom 156 | . . . 4 ..^ ..^ |
127 | 15 | ad2antrl 482 | . . . . . . . 8 ..^ ..^ |
128 | 127 | zcnd 9314 | . . . . . . 7 ..^ ..^ |
129 | 128, 120, 121 | divcanap4d 8692 | . . . . . 6 ..^ ..^ |
130 | 129 | eqcomd 2171 | . . . . 5 ..^ ..^ |
131 | oveq1 5849 | . . . . . 6 | |
132 | 131 | eqeq2d 2177 | . . . . 5 |
133 | 130, 132 | syl5ibrcom 156 | . . . 4 ..^ ..^ |
134 | 126, 133 | impbid 128 | . . 3 ..^ ..^ |
135 | 117, 134 | sylan2 284 | . 2 |
136 | 1, 58, 114, 135 | f1o2d 6043 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wne 2336 crab 2448 class class class wbr 3982 cmpt 4043 wf1o 5187 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 cmul 7758 clt 7933 cle 7934 # cap 8479 cdiv 8568 cn 8857 cn0 9114 cz 9191 cfz 9944 ..^cfzo 10077 cdvds 11727 cgcd 11875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 |
This theorem is referenced by: hashgcdeq 12171 |
Copyright terms: Public domain | W3C validator |