| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashgcdlem | Unicode version | ||
| Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| hashgcdlem.a |
|
| hashgcdlem.b |
|
| hashgcdlem.f |
|
| Ref | Expression |
|---|---|
| hashgcdlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgcdlem.f |
. 2
| |
| 2 | oveq1 5964 |
. . . . 5
| |
| 3 | 2 | eqeq1d 2215 |
. . . 4
|
| 4 | hashgcdlem.a |
. . . 4
| |
| 5 | 3, 4 | elrab2 2936 |
. . 3
|
| 6 | elfzonn0 10332 |
. . . . . . 7
| |
| 7 | 6 | ad2antrl 490 |
. . . . . 6
|
| 8 | nnnn0 9322 |
. . . . . . . 8
| |
| 9 | 8 | 3ad2ant2 1022 |
. . . . . . 7
|
| 10 | 9 | adantr 276 |
. . . . . 6
|
| 11 | 7, 10 | nn0mulcld 9373 |
. . . . 5
|
| 12 | simpl1 1003 |
. . . . 5
| |
| 13 | elfzolt2 10299 |
. . . . . . 7
| |
| 14 | 13 | ad2antrl 490 |
. . . . . 6
|
| 15 | elfzoelz 10289 |
. . . . . . . . 9
| |
| 16 | 15 | ad2antrl 490 |
. . . . . . . 8
|
| 17 | 16 | zred 9515 |
. . . . . . 7
|
| 18 | nnre 9063 |
. . . . . . . . 9
| |
| 19 | 18 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | nnre 9063 |
. . . . . . . . . 10
| |
| 22 | nngt0 9081 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | jca 306 |
. . . . . . . . 9
|
| 24 | 23 | 3ad2ant2 1022 |
. . . . . . . 8
|
| 25 | 24 | adantr 276 |
. . . . . . 7
|
| 26 | ltmuldiv 8967 |
. . . . . . 7
| |
| 27 | 17, 20, 25, 26 | syl3anc 1250 |
. . . . . 6
|
| 28 | 14, 27 | mpbird 167 |
. . . . 5
|
| 29 | elfzo0 10328 |
. . . . 5
| |
| 30 | 11, 12, 28, 29 | syl3anbrc 1184 |
. . . 4
|
| 31 | nncn 9064 |
. . . . . . . . . 10
| |
| 32 | 31 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 33 | nncn 9064 |
. . . . . . . . . 10
| |
| 34 | 33 | 3ad2ant2 1022 |
. . . . . . . . 9
|
| 35 | nnap0 9085 |
. . . . . . . . . 10
| |
| 36 | 35 | 3ad2ant2 1022 |
. . . . . . . . 9
|
| 37 | 32, 34, 36 | divcanap1d 8884 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 38 | eqcomd 2212 |
. . . . . 6
|
| 40 | 39 | oveq2d 5973 |
. . . . 5
|
| 41 | nndivdvds 12182 |
. . . . . . . . 9
| |
| 42 | 41 | biimp3a 1358 |
. . . . . . . 8
|
| 43 | 42 | nnzd 9514 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | mulgcdr 12414 |
. . . . . 6
| |
| 46 | 16, 44, 10, 45 | syl3anc 1250 |
. . . . 5
|
| 47 | simprr 531 |
. . . . . . 7
| |
| 48 | 47 | oveq1d 5972 |
. . . . . 6
|
| 49 | 34 | mulid2d 8111 |
. . . . . . 7
|
| 50 | 49 | adantr 276 |
. . . . . 6
|
| 51 | 48, 50 | eqtrd 2239 |
. . . . 5
|
| 52 | 40, 46, 51 | 3eqtrd 2243 |
. . . 4
|
| 53 | oveq1 5964 |
. . . . . 6
| |
| 54 | 53 | eqeq1d 2215 |
. . . . 5
|
| 55 | hashgcdlem.b |
. . . . 5
| |
| 56 | 54, 55 | elrab2 2936 |
. . . 4
|
| 57 | 30, 52, 56 | sylanbrc 417 |
. . 3
|
| 58 | 5, 57 | sylan2b 287 |
. 2
|
| 59 | oveq1 5964 |
. . . . 5
| |
| 60 | 59 | eqeq1d 2215 |
. . . 4
|
| 61 | 60, 55 | elrab2 2936 |
. . 3
|
| 62 | simprr 531 |
. . . . . . . 8
| |
| 63 | elfzoelz 10289 |
. . . . . . . . . . 11
| |
| 64 | 63 | ad2antrl 490 |
. . . . . . . . . 10
|
| 65 | simpl1 1003 |
. . . . . . . . . . 11
| |
| 66 | 65 | nnzd 9514 |
. . . . . . . . . 10
|
| 67 | gcddvds 12359 |
. . . . . . . . . 10
| |
| 68 | 64, 66, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 68 | simpld 112 |
. . . . . . . 8
|
| 70 | 62, 69 | eqbrtrrd 4075 |
. . . . . . 7
|
| 71 | nnz 9411 |
. . . . . . . . . 10
| |
| 72 | 71 | 3ad2ant2 1022 |
. . . . . . . . 9
|
| 73 | 72 | adantr 276 |
. . . . . . . 8
|
| 74 | nnne0 9084 |
. . . . . . . . . 10
| |
| 75 | 74 | 3ad2ant2 1022 |
. . . . . . . . 9
|
| 76 | 75 | adantr 276 |
. . . . . . . 8
|
| 77 | dvdsval2 12176 |
. . . . . . . 8
| |
| 78 | 73, 76, 64, 77 | syl3anc 1250 |
. . . . . . 7
|
| 79 | 70, 78 | mpbid 147 |
. . . . . 6
|
| 80 | elfzofz 10305 |
. . . . . . . . 9
| |
| 81 | 80 | ad2antrl 490 |
. . . . . . . 8
|
| 82 | elfznn0 10256 |
. . . . . . . 8
| |
| 83 | nn0re 9324 |
. . . . . . . . 9
| |
| 84 | nn0ge0 9340 |
. . . . . . . . 9
| |
| 85 | 83, 84 | jca 306 |
. . . . . . . 8
|
| 86 | 81, 82, 85 | 3syl 17 |
. . . . . . 7
|
| 87 | 24 | adantr 276 |
. . . . . . 7
|
| 88 | divge0 8966 |
. . . . . . 7
| |
| 89 | 86, 87, 88 | syl2anc 411 |
. . . . . 6
|
| 90 | elnn0z 9405 |
. . . . . 6
| |
| 91 | 79, 89, 90 | sylanbrc 417 |
. . . . 5
|
| 92 | 42 | adantr 276 |
. . . . 5
|
| 93 | elfzolt2 10299 |
. . . . . . 7
| |
| 94 | 93 | ad2antrl 490 |
. . . . . 6
|
| 95 | 64 | zred 9515 |
. . . . . . 7
|
| 96 | 19 | adantr 276 |
. . . . . . 7
|
| 97 | ltdiv1 8961 |
. . . . . . 7
| |
| 98 | 95, 96, 87, 97 | syl3anc 1250 |
. . . . . 6
|
| 99 | 94, 98 | mpbid 147 |
. . . . 5
|
| 100 | elfzo0 10328 |
. . . . 5
| |
| 101 | 91, 92, 99, 100 | syl3anbrc 1184 |
. . . 4
|
| 102 | 62 | oveq1d 5972 |
. . . . 5
|
| 103 | simpl2 1004 |
. . . . . 6
| |
| 104 | simpl3 1005 |
. . . . . 6
| |
| 105 | gcddiv 12415 |
. . . . . 6
| |
| 106 | 64, 66, 103, 70, 104, 105 | syl32anc 1258 |
. . . . 5
|
| 107 | 34, 36 | dividapd 8879 |
. . . . . 6
|
| 108 | 107 | adantr 276 |
. . . . 5
|
| 109 | 102, 106, 108 | 3eqtr3d 2247 |
. . . 4
|
| 110 | oveq1 5964 |
. . . . . 6
| |
| 111 | 110 | eqeq1d 2215 |
. . . . 5
|
| 112 | 111, 4 | elrab2 2936 |
. . . 4
|
| 113 | 101, 109, 112 | sylanbrc 417 |
. . 3
|
| 114 | 61, 113 | sylan2b 287 |
. 2
|
| 115 | 5 | simplbi 274 |
. . . 4
|
| 116 | 61 | simplbi 274 |
. . . 4
|
| 117 | 115, 116 | anim12i 338 |
. . 3
|
| 118 | 63 | ad2antll 491 |
. . . . . . . 8
|
| 119 | 118 | zcnd 9516 |
. . . . . . 7
|
| 120 | 34 | adantr 276 |
. . . . . . 7
|
| 121 | 36 | adantr 276 |
. . . . . . 7
|
| 122 | 119, 120, 121 | divcanap1d 8884 |
. . . . . 6
|
| 123 | 122 | eqcomd 2212 |
. . . . 5
|
| 124 | oveq1 5964 |
. . . . . 6
| |
| 125 | 124 | eqeq2d 2218 |
. . . . 5
|
| 126 | 123, 125 | syl5ibrcom 157 |
. . . 4
|
| 127 | 15 | ad2antrl 490 |
. . . . . . . 8
|
| 128 | 127 | zcnd 9516 |
. . . . . . 7
|
| 129 | 128, 120, 121 | divcanap4d 8889 |
. . . . . 6
|
| 130 | 129 | eqcomd 2212 |
. . . . 5
|
| 131 | oveq1 5964 |
. . . . . 6
| |
| 132 | 131 | eqeq2d 2218 |
. . . . 5
|
| 133 | 130, 132 | syl5ibrcom 157 |
. . . 4
|
| 134 | 126, 133 | impbid 129 |
. . 3
|
| 135 | 117, 134 | sylan2 286 |
. 2
|
| 136 | 1, 58, 114, 135 | f1o2d 6164 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-sup 7101 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-fl 10435 df-mod 10490 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-dvds 12174 df-gcd 12350 |
| This theorem is referenced by: hashgcdeq 12637 |
| Copyright terms: Public domain | W3C validator |