ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdlem Unicode version

Theorem hashgcdlem 12192
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
hashgcdlem.a  |-  A  =  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
hashgcdlem.b  |-  B  =  { z  e.  ( 0..^ M )  |  ( z  gcd  M
)  =  N }
hashgcdlem.f  |-  F  =  ( x  e.  A  |->  ( x  x.  N
) )
Assertion
Ref Expression
hashgcdlem  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  F : A -1-1-onto-> B )
Distinct variable groups:    x, y, M   
x, z, M    x, A    x, B    x, N, y    z, N
Allowed substitution hints:    A( y, z)    B( y, z)    F( x, y, z)

Proof of Theorem hashgcdlem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 hashgcdlem.f . 2  |-  F  =  ( x  e.  A  |->  ( x  x.  N
) )
2 oveq1 5860 . . . . 5  |-  ( y  =  x  ->  (
y  gcd  ( M  /  N ) )  =  ( x  gcd  ( M  /  N ) ) )
32eqeq1d 2179 . . . 4  |-  ( y  =  x  ->  (
( y  gcd  ( M  /  N ) )  =  1  <->  ( x  gcd  ( M  /  N
) )  =  1 ) )
4 hashgcdlem.a . . . 4  |-  A  =  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
53, 4elrab2 2889 . . 3  |-  ( x  e.  A  <->  ( x  e.  ( 0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N
) )  =  1 ) )
6 elfzonn0 10142 . . . . . . 7  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  e.  NN0 )
76ad2antrl 487 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  NN0 )
8 nnnn0 9142 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
983ad2ant2 1014 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  NN0 )
109adantr 274 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  N  e.  NN0 )
117, 10nn0mulcld 9193 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  NN0 )
12 simpl1 995 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  e.  NN )
13 elfzolt2 10112 . . . . . . 7  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  <  ( M  /  N ) )
1413ad2antrl 487 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  <  ( M  /  N ) )
15 elfzoelz 10103 . . . . . . . . 9  |-  ( x  e.  ( 0..^ ( M  /  N ) )  ->  x  e.  ZZ )
1615ad2antrl 487 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  ZZ )
1716zred 9334 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  x  e.  RR )
18 nnre 8885 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  RR )
19183ad2ant1 1013 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  M  e.  RR )
2019adantr 274 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  e.  RR )
21 nnre 8885 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR )
22 nngt0 8903 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
2321, 22jca 304 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
24233ad2ant2 1014 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( N  e.  RR  /\  0  <  N ) )
2524adantr 274 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
26 ltmuldiv 8790 . . . . . . 7  |-  ( ( x  e.  RR  /\  M  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( x  x.  N )  <  M  <->  x  <  ( M  /  N ) ) )
2717, 20, 25, 26syl3anc 1233 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  < 
M  <->  x  <  ( M  /  N ) ) )
2814, 27mpbird 166 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  <  M
)
29 elfzo0 10138 . . . . 5  |-  ( ( x  x.  N )  e.  ( 0..^ M )  <->  ( ( x  x.  N )  e. 
NN0  /\  M  e.  NN  /\  ( x  x.  N )  <  M
) )
3011, 12, 28, 29syl3anbrc 1176 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  ( 0..^ M ) )
31 nncn 8886 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  CC )
32313ad2ant1 1013 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  M  e.  CC )
33 nncn 8886 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
34333ad2ant2 1014 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  CC )
35 nnap0 8907 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N #  0 )
36353ad2ant2 1014 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N #  0 )
3732, 34, 36divcanap1d 8708 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
( M  /  N
)  x.  N )  =  M )
3837adantr 274 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( M  /  N )  x.  N )  =  M )
3938eqcomd 2176 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  M  =  ( ( M  /  N
)  x.  N ) )
4039oveq2d 5869 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd 
M )  =  ( ( x  x.  N
)  gcd  ( ( M  /  N )  x.  N ) ) )
41 nndivdvds 11758 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
4241biimp3a 1340 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( M  /  N )  e.  NN )
4342nnzd 9333 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( M  /  N )  e.  ZZ )
4443adantr 274 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( M  /  N )  e.  ZZ )
45 mulgcdr 11973 . . . . . 6  |-  ( ( x  e.  ZZ  /\  ( M  /  N
)  e.  ZZ  /\  N  e.  NN0 )  -> 
( ( x  x.  N )  gcd  (
( M  /  N
)  x.  N ) )  =  ( ( x  gcd  ( M  /  N ) )  x.  N ) )
4616, 44, 10, 45syl3anc 1233 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd  ( ( M  /  N )  x.  N
) )  =  ( ( x  gcd  ( M  /  N ) )  x.  N ) )
47 simprr 527 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  gcd  ( M  /  N
) )  =  1 )
4847oveq1d 5868 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  gcd  ( M  /  N ) )  x.  N )  =  ( 1  x.  N ) )
4934mulid2d 7938 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
1  x.  N )  =  N )
5049adantr 274 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( 1  x.  N )  =  N )
5148, 50eqtrd 2203 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  gcd  ( M  /  N ) )  x.  N )  =  N )
5240, 46, 513eqtrd 2207 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( ( x  x.  N )  gcd 
M )  =  N )
53 oveq1 5860 . . . . . 6  |-  ( z  =  ( x  x.  N )  ->  (
z  gcd  M )  =  ( ( x  x.  N )  gcd 
M ) )
5453eqeq1d 2179 . . . . 5  |-  ( z  =  ( x  x.  N )  ->  (
( z  gcd  M
)  =  N  <->  ( (
x  x.  N )  gcd  M )  =  N ) )
55 hashgcdlem.b . . . . 5  |-  B  =  { z  e.  ( 0..^ M )  |  ( z  gcd  M
)  =  N }
5654, 55elrab2 2889 . . . 4  |-  ( ( x  x.  N )  e.  B  <->  ( (
x  x.  N )  e.  ( 0..^ M )  /\  ( ( x  x.  N )  gcd  M )  =  N ) )
5730, 52, 56sylanbrc 415 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  ( x  gcd  ( M  /  N ) )  =  1 ) )  ->  ( x  x.  N )  e.  B
)
585, 57sylan2b 285 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  x  e.  A )  ->  ( x  x.  N
)  e.  B )
59 oveq1 5860 . . . . 5  |-  ( z  =  w  ->  (
z  gcd  M )  =  ( w  gcd  M ) )
6059eqeq1d 2179 . . . 4  |-  ( z  =  w  ->  (
( z  gcd  M
)  =  N  <->  ( w  gcd  M )  =  N ) )
6160, 55elrab2 2889 . . 3  |-  ( w  e.  B  <->  ( w  e.  ( 0..^ M )  /\  ( w  gcd  M )  =  N ) )
62 simprr 527 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  gcd  M )  =  N )
63 elfzoelz 10103 . . . . . . . . . . 11  |-  ( w  e.  ( 0..^ M )  ->  w  e.  ZZ )
6463ad2antrl 487 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  ZZ )
65 simpl1 995 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  NN )
6665nnzd 9333 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  ZZ )
67 gcddvds 11918 . . . . . . . . . 10  |-  ( ( w  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( w  gcd  M )  ||  w  /\  ( w  gcd  M ) 
||  M ) )
6864, 66, 67syl2anc 409 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  ||  w  /\  ( w  gcd  M )  ||  M ) )
6968simpld 111 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  gcd  M )  ||  w )
7062, 69eqbrtrrd 4013 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  ||  w
)
71 nnz 9231 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
72713ad2ant2 1014 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  e.  ZZ )
7372adantr 274 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  e.  ZZ )
74 nnne0 8906 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
75743ad2ant2 1014 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  N  =/=  0 )
7675adantr 274 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  =/=  0
)
77 dvdsval2 11752 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  w  e.  ZZ )  ->  ( N  ||  w  <->  ( w  /  N )  e.  ZZ ) )
7873, 76, 64, 77syl3anc 1233 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  ||  w 
<->  ( w  /  N
)  e.  ZZ ) )
7970, 78mpbid 146 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  ZZ )
80 elfzofz 10118 . . . . . . . . 9  |-  ( w  e.  ( 0..^ M )  ->  w  e.  ( 0 ... M
) )
8180ad2antrl 487 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  ( 0 ... M ) )
82 elfznn0 10070 . . . . . . . 8  |-  ( w  e.  ( 0 ... M )  ->  w  e.  NN0 )
83 nn0re 9144 . . . . . . . . 9  |-  ( w  e.  NN0  ->  w  e.  RR )
84 nn0ge0 9160 . . . . . . . . 9  |-  ( w  e.  NN0  ->  0  <_  w )
8583, 84jca 304 . . . . . . . 8  |-  ( w  e.  NN0  ->  ( w  e.  RR  /\  0  <_  w ) )
8681, 82, 853syl 17 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  e.  RR  /\  0  <_  w ) )
8724adantr 274 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
88 divge0 8789 . . . . . . 7  |-  ( ( ( w  e.  RR  /\  0  <_  w )  /\  ( N  e.  RR  /\  0  <  N ) )  ->  0  <_  ( w  /  N ) )
8986, 87, 88syl2anc 409 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  0  <_  (
w  /  N ) )
90 elnn0z 9225 . . . . . 6  |-  ( ( w  /  N )  e.  NN0  <->  ( ( w  /  N )  e.  ZZ  /\  0  <_ 
( w  /  N
) ) )
9179, 89, 90sylanbrc 415 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  NN0 )
9242adantr 274 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( M  /  N )  e.  NN )
93 elfzolt2 10112 . . . . . . 7  |-  ( w  e.  ( 0..^ M )  ->  w  <  M )
9493ad2antrl 487 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  <  M
)
9564zred 9334 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  w  e.  RR )
9619adantr 274 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  M  e.  RR )
97 ltdiv1 8784 . . . . . . 7  |-  ( ( w  e.  RR  /\  M  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( w  <  M  <->  ( w  /  N )  <  ( M  /  N ) ) )
9895, 96, 87, 97syl3anc 1233 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  < 
M  <->  ( w  /  N )  <  ( M  /  N ) ) )
9994, 98mpbid 146 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  <  ( M  /  N ) )
100 elfzo0 10138 . . . . 5  |-  ( ( w  /  N )  e.  ( 0..^ ( M  /  N ) )  <->  ( ( w  /  N )  e. 
NN0  /\  ( M  /  N )  e.  NN  /\  ( w  /  N
)  <  ( M  /  N ) ) )
10191, 92, 99, 100syl3anbrc 1176 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  ( 0..^ ( M  /  N ) ) )
10262oveq1d 5868 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  /  N )  =  ( N  /  N ) )
103 simpl2 996 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  e.  NN )
104 simpl3 997 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  N  ||  M
)
105 gcddiv 11974 . . . . . 6  |-  ( ( ( w  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  NN )  /\  ( N  ||  w  /\  N  ||  M ) )  ->  ( (
w  gcd  M )  /  N )  =  ( ( w  /  N
)  gcd  ( M  /  N ) ) )
10664, 66, 103, 70, 104, 105syl32anc 1241 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  gcd  M )  /  N )  =  ( ( w  /  N
)  gcd  ( M  /  N ) ) )
10734, 36dividapd 8703 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  ( N  /  N )  =  1 )
108107adantr 274 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( N  /  N )  =  1 )
109102, 106, 1083eqtr3d 2211 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( ( w  /  N )  gcd  ( M  /  N
) )  =  1 )
110 oveq1 5860 . . . . . 6  |-  ( y  =  ( w  /  N )  ->  (
y  gcd  ( M  /  N ) )  =  ( ( w  /  N )  gcd  ( M  /  N ) ) )
111110eqeq1d 2179 . . . . 5  |-  ( y  =  ( w  /  N )  ->  (
( y  gcd  ( M  /  N ) )  =  1  <->  ( (
w  /  N )  gcd  ( M  /  N ) )  =  1 ) )
112111, 4elrab2 2889 . . . 4  |-  ( ( w  /  N )  e.  A  <->  ( (
w  /  N )  e.  ( 0..^ ( M  /  N ) )  /\  ( ( w  /  N )  gcd  ( M  /  N ) )  =  1 ) )
113101, 109, 112sylanbrc 415 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( w  e.  (
0..^ M )  /\  ( w  gcd  M )  =  N ) )  ->  ( w  /  N )  e.  A
)
11461, 113sylan2b 285 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  w  e.  B )  ->  ( w  /  N
)  e.  A )
1155simplbi 272 . . . 4  |-  ( x  e.  A  ->  x  e.  ( 0..^ ( M  /  N ) ) )
11661simplbi 272 . . . 4  |-  ( w  e.  B  ->  w  e.  ( 0..^ M ) )
117115, 116anim12i 336 . . 3  |-  ( ( x  e.  A  /\  w  e.  B )  ->  ( x  e.  ( 0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )
11863ad2antll 488 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  e.  ZZ )
119118zcnd 9335 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  e.  CC )
12034adantr 274 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  N  e.  CC )
12136adantr 274 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  N #  0 )
122119, 120, 121divcanap1d 8708 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( ( w  /  N )  x.  N )  =  w )
123122eqcomd 2176 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  w  =  ( ( w  /  N
)  x.  N ) )
124 oveq1 5860 . . . . . 6  |-  ( x  =  ( w  /  N )  ->  (
x  x.  N )  =  ( ( w  /  N )  x.  N ) )
125124eqeq2d 2182 . . . . 5  |-  ( x  =  ( w  /  N )  ->  (
w  =  ( x  x.  N )  <->  w  =  ( ( w  /  N )  x.  N
) ) )
126123, 125syl5ibrcom 156 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( x  =  ( w  /  N
)  ->  w  =  ( x  x.  N
) ) )
12715ad2antrl 487 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  e.  ZZ )
128127zcnd 9335 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  e.  CC )
129128, 120, 121divcanap4d 8713 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( ( x  x.  N )  /  N )  =  x )
130129eqcomd 2176 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  x  =  ( ( x  x.  N
)  /  N ) )
131 oveq1 5860 . . . . . 6  |-  ( w  =  ( x  x.  N )  ->  (
w  /  N )  =  ( ( x  x.  N )  /  N ) )
132131eqeq2d 2182 . . . . 5  |-  ( w  =  ( x  x.  N )  ->  (
x  =  ( w  /  N )  <->  x  =  ( ( x  x.  N )  /  N
) ) )
133130, 132syl5ibrcom 156 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( w  =  ( x  x.  N
)  ->  x  =  ( w  /  N
) ) )
134126, 133impbid 128 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  (
0..^ ( M  /  N ) )  /\  w  e.  ( 0..^ M ) ) )  ->  ( x  =  ( w  /  N
)  <->  w  =  (
x  x.  N ) ) )
135117, 134sylan2 284 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  /\  ( x  e.  A  /\  w  e.  B
) )  ->  (
x  =  ( w  /  N )  <->  w  =  ( x  x.  N
) ) )
1361, 58, 114, 135f1o2d 6054 1  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  F : A -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   {crab 2452   class class class wbr 3989    |-> cmpt 4050   -1-1-onto->wf1o 5197  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779    < clt 7954    <_ cle 7955   # cap 8500    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212   ...cfz 9965  ..^cfzo 10098    || cdvds 11749    gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  hashgcdeq  12193
  Copyright terms: Public domain W3C validator