| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hashgcdlem | Unicode version | ||
| Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| hashgcdlem.a | 
 | 
| hashgcdlem.b | 
 | 
| hashgcdlem.f | 
 | 
| Ref | Expression | 
|---|---|
| hashgcdlem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hashgcdlem.f | 
. 2
 | |
| 2 | oveq1 5929 | 
. . . . 5
 | |
| 3 | 2 | eqeq1d 2205 | 
. . . 4
 | 
| 4 | hashgcdlem.a | 
. . . 4
 | |
| 5 | 3, 4 | elrab2 2923 | 
. . 3
 | 
| 6 | elfzonn0 10262 | 
. . . . . . 7
 | |
| 7 | 6 | ad2antrl 490 | 
. . . . . 6
 | 
| 8 | nnnn0 9256 | 
. . . . . . . 8
 | |
| 9 | 8 | 3ad2ant2 1021 | 
. . . . . . 7
 | 
| 10 | 9 | adantr 276 | 
. . . . . 6
 | 
| 11 | 7, 10 | nn0mulcld 9307 | 
. . . . 5
 | 
| 12 | simpl1 1002 | 
. . . . 5
 | |
| 13 | elfzolt2 10232 | 
. . . . . . 7
 | |
| 14 | 13 | ad2antrl 490 | 
. . . . . 6
 | 
| 15 | elfzoelz 10222 | 
. . . . . . . . 9
 | |
| 16 | 15 | ad2antrl 490 | 
. . . . . . . 8
 | 
| 17 | 16 | zred 9448 | 
. . . . . . 7
 | 
| 18 | nnre 8997 | 
. . . . . . . . 9
 | |
| 19 | 18 | 3ad2ant1 1020 | 
. . . . . . . 8
 | 
| 20 | 19 | adantr 276 | 
. . . . . . 7
 | 
| 21 | nnre 8997 | 
. . . . . . . . . 10
 | |
| 22 | nngt0 9015 | 
. . . . . . . . . 10
 | |
| 23 | 21, 22 | jca 306 | 
. . . . . . . . 9
 | 
| 24 | 23 | 3ad2ant2 1021 | 
. . . . . . . 8
 | 
| 25 | 24 | adantr 276 | 
. . . . . . 7
 | 
| 26 | ltmuldiv 8901 | 
. . . . . . 7
 | |
| 27 | 17, 20, 25, 26 | syl3anc 1249 | 
. . . . . 6
 | 
| 28 | 14, 27 | mpbird 167 | 
. . . . 5
 | 
| 29 | elfzo0 10258 | 
. . . . 5
 | |
| 30 | 11, 12, 28, 29 | syl3anbrc 1183 | 
. . . 4
 | 
| 31 | nncn 8998 | 
. . . . . . . . . 10
 | |
| 32 | 31 | 3ad2ant1 1020 | 
. . . . . . . . 9
 | 
| 33 | nncn 8998 | 
. . . . . . . . . 10
 | |
| 34 | 33 | 3ad2ant2 1021 | 
. . . . . . . . 9
 | 
| 35 | nnap0 9019 | 
. . . . . . . . . 10
 | |
| 36 | 35 | 3ad2ant2 1021 | 
. . . . . . . . 9
 | 
| 37 | 32, 34, 36 | divcanap1d 8818 | 
. . . . . . . 8
 | 
| 38 | 37 | adantr 276 | 
. . . . . . 7
 | 
| 39 | 38 | eqcomd 2202 | 
. . . . . 6
 | 
| 40 | 39 | oveq2d 5938 | 
. . . . 5
 | 
| 41 | nndivdvds 11961 | 
. . . . . . . . 9
 | |
| 42 | 41 | biimp3a 1356 | 
. . . . . . . 8
 | 
| 43 | 42 | nnzd 9447 | 
. . . . . . 7
 | 
| 44 | 43 | adantr 276 | 
. . . . . 6
 | 
| 45 | mulgcdr 12185 | 
. . . . . 6
 | |
| 46 | 16, 44, 10, 45 | syl3anc 1249 | 
. . . . 5
 | 
| 47 | simprr 531 | 
. . . . . . 7
 | |
| 48 | 47 | oveq1d 5937 | 
. . . . . 6
 | 
| 49 | 34 | mulid2d 8045 | 
. . . . . . 7
 | 
| 50 | 49 | adantr 276 | 
. . . . . 6
 | 
| 51 | 48, 50 | eqtrd 2229 | 
. . . . 5
 | 
| 52 | 40, 46, 51 | 3eqtrd 2233 | 
. . . 4
 | 
| 53 | oveq1 5929 | 
. . . . . 6
 | |
| 54 | 53 | eqeq1d 2205 | 
. . . . 5
 | 
| 55 | hashgcdlem.b | 
. . . . 5
 | |
| 56 | 54, 55 | elrab2 2923 | 
. . . 4
 | 
| 57 | 30, 52, 56 | sylanbrc 417 | 
. . 3
 | 
| 58 | 5, 57 | sylan2b 287 | 
. 2
 | 
| 59 | oveq1 5929 | 
. . . . 5
 | |
| 60 | 59 | eqeq1d 2205 | 
. . . 4
 | 
| 61 | 60, 55 | elrab2 2923 | 
. . 3
 | 
| 62 | simprr 531 | 
. . . . . . . 8
 | |
| 63 | elfzoelz 10222 | 
. . . . . . . . . . 11
 | |
| 64 | 63 | ad2antrl 490 | 
. . . . . . . . . 10
 | 
| 65 | simpl1 1002 | 
. . . . . . . . . . 11
 | |
| 66 | 65 | nnzd 9447 | 
. . . . . . . . . 10
 | 
| 67 | gcddvds 12130 | 
. . . . . . . . . 10
 | |
| 68 | 64, 66, 67 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 69 | 68 | simpld 112 | 
. . . . . . . 8
 | 
| 70 | 62, 69 | eqbrtrrd 4057 | 
. . . . . . 7
 | 
| 71 | nnz 9345 | 
. . . . . . . . . 10
 | |
| 72 | 71 | 3ad2ant2 1021 | 
. . . . . . . . 9
 | 
| 73 | 72 | adantr 276 | 
. . . . . . . 8
 | 
| 74 | nnne0 9018 | 
. . . . . . . . . 10
 | |
| 75 | 74 | 3ad2ant2 1021 | 
. . . . . . . . 9
 | 
| 76 | 75 | adantr 276 | 
. . . . . . . 8
 | 
| 77 | dvdsval2 11955 | 
. . . . . . . 8
 | |
| 78 | 73, 76, 64, 77 | syl3anc 1249 | 
. . . . . . 7
 | 
| 79 | 70, 78 | mpbid 147 | 
. . . . . 6
 | 
| 80 | elfzofz 10238 | 
. . . . . . . . 9
 | |
| 81 | 80 | ad2antrl 490 | 
. . . . . . . 8
 | 
| 82 | elfznn0 10189 | 
. . . . . . . 8
 | |
| 83 | nn0re 9258 | 
. . . . . . . . 9
 | |
| 84 | nn0ge0 9274 | 
. . . . . . . . 9
 | |
| 85 | 83, 84 | jca 306 | 
. . . . . . . 8
 | 
| 86 | 81, 82, 85 | 3syl 17 | 
. . . . . . 7
 | 
| 87 | 24 | adantr 276 | 
. . . . . . 7
 | 
| 88 | divge0 8900 | 
. . . . . . 7
 | |
| 89 | 86, 87, 88 | syl2anc 411 | 
. . . . . 6
 | 
| 90 | elnn0z 9339 | 
. . . . . 6
 | |
| 91 | 79, 89, 90 | sylanbrc 417 | 
. . . . 5
 | 
| 92 | 42 | adantr 276 | 
. . . . 5
 | 
| 93 | elfzolt2 10232 | 
. . . . . . 7
 | |
| 94 | 93 | ad2antrl 490 | 
. . . . . 6
 | 
| 95 | 64 | zred 9448 | 
. . . . . . 7
 | 
| 96 | 19 | adantr 276 | 
. . . . . . 7
 | 
| 97 | ltdiv1 8895 | 
. . . . . . 7
 | |
| 98 | 95, 96, 87, 97 | syl3anc 1249 | 
. . . . . 6
 | 
| 99 | 94, 98 | mpbid 147 | 
. . . . 5
 | 
| 100 | elfzo0 10258 | 
. . . . 5
 | |
| 101 | 91, 92, 99, 100 | syl3anbrc 1183 | 
. . . 4
 | 
| 102 | 62 | oveq1d 5937 | 
. . . . 5
 | 
| 103 | simpl2 1003 | 
. . . . . 6
 | |
| 104 | simpl3 1004 | 
. . . . . 6
 | |
| 105 | gcddiv 12186 | 
. . . . . 6
 | |
| 106 | 64, 66, 103, 70, 104, 105 | syl32anc 1257 | 
. . . . 5
 | 
| 107 | 34, 36 | dividapd 8813 | 
. . . . . 6
 | 
| 108 | 107 | adantr 276 | 
. . . . 5
 | 
| 109 | 102, 106, 108 | 3eqtr3d 2237 | 
. . . 4
 | 
| 110 | oveq1 5929 | 
. . . . . 6
 | |
| 111 | 110 | eqeq1d 2205 | 
. . . . 5
 | 
| 112 | 111, 4 | elrab2 2923 | 
. . . 4
 | 
| 113 | 101, 109, 112 | sylanbrc 417 | 
. . 3
 | 
| 114 | 61, 113 | sylan2b 287 | 
. 2
 | 
| 115 | 5 | simplbi 274 | 
. . . 4
 | 
| 116 | 61 | simplbi 274 | 
. . . 4
 | 
| 117 | 115, 116 | anim12i 338 | 
. . 3
 | 
| 118 | 63 | ad2antll 491 | 
. . . . . . . 8
 | 
| 119 | 118 | zcnd 9449 | 
. . . . . . 7
 | 
| 120 | 34 | adantr 276 | 
. . . . . . 7
 | 
| 121 | 36 | adantr 276 | 
. . . . . . 7
 | 
| 122 | 119, 120, 121 | divcanap1d 8818 | 
. . . . . 6
 | 
| 123 | 122 | eqcomd 2202 | 
. . . . 5
 | 
| 124 | oveq1 5929 | 
. . . . . 6
 | |
| 125 | 124 | eqeq2d 2208 | 
. . . . 5
 | 
| 126 | 123, 125 | syl5ibrcom 157 | 
. . . 4
 | 
| 127 | 15 | ad2antrl 490 | 
. . . . . . . 8
 | 
| 128 | 127 | zcnd 9449 | 
. . . . . . 7
 | 
| 129 | 128, 120, 121 | divcanap4d 8823 | 
. . . . . 6
 | 
| 130 | 129 | eqcomd 2202 | 
. . . . 5
 | 
| 131 | oveq1 5929 | 
. . . . . 6
 | |
| 132 | 131 | eqeq2d 2208 | 
. . . . 5
 | 
| 133 | 130, 132 | syl5ibrcom 157 | 
. . . 4
 | 
| 134 | 126, 133 | impbid 129 | 
. . 3
 | 
| 135 | 117, 134 | sylan2 286 | 
. 2
 | 
| 136 | 1, 58, 114, 135 | f1o2d 6128 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 | 
| This theorem is referenced by: hashgcdeq 12408 | 
| Copyright terms: Public domain | W3C validator |