| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashgcdlem | Unicode version | ||
| Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| hashgcdlem.a |
|
| hashgcdlem.b |
|
| hashgcdlem.f |
|
| Ref | Expression |
|---|---|
| hashgcdlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgcdlem.f |
. 2
| |
| 2 | oveq1 5932 |
. . . . 5
| |
| 3 | 2 | eqeq1d 2205 |
. . . 4
|
| 4 | hashgcdlem.a |
. . . 4
| |
| 5 | 3, 4 | elrab2 2923 |
. . 3
|
| 6 | elfzonn0 10279 |
. . . . . . 7
| |
| 7 | 6 | ad2antrl 490 |
. . . . . 6
|
| 8 | nnnn0 9273 |
. . . . . . . 8
| |
| 9 | 8 | 3ad2ant2 1021 |
. . . . . . 7
|
| 10 | 9 | adantr 276 |
. . . . . 6
|
| 11 | 7, 10 | nn0mulcld 9324 |
. . . . 5
|
| 12 | simpl1 1002 |
. . . . 5
| |
| 13 | elfzolt2 10249 |
. . . . . . 7
| |
| 14 | 13 | ad2antrl 490 |
. . . . . 6
|
| 15 | elfzoelz 10239 |
. . . . . . . . 9
| |
| 16 | 15 | ad2antrl 490 |
. . . . . . . 8
|
| 17 | 16 | zred 9465 |
. . . . . . 7
|
| 18 | nnre 9014 |
. . . . . . . . 9
| |
| 19 | 18 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | nnre 9014 |
. . . . . . . . . 10
| |
| 22 | nngt0 9032 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | jca 306 |
. . . . . . . . 9
|
| 24 | 23 | 3ad2ant2 1021 |
. . . . . . . 8
|
| 25 | 24 | adantr 276 |
. . . . . . 7
|
| 26 | ltmuldiv 8918 |
. . . . . . 7
| |
| 27 | 17, 20, 25, 26 | syl3anc 1249 |
. . . . . 6
|
| 28 | 14, 27 | mpbird 167 |
. . . . 5
|
| 29 | elfzo0 10275 |
. . . . 5
| |
| 30 | 11, 12, 28, 29 | syl3anbrc 1183 |
. . . 4
|
| 31 | nncn 9015 |
. . . . . . . . . 10
| |
| 32 | 31 | 3ad2ant1 1020 |
. . . . . . . . 9
|
| 33 | nncn 9015 |
. . . . . . . . . 10
| |
| 34 | 33 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 35 | nnap0 9036 |
. . . . . . . . . 10
| |
| 36 | 35 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 37 | 32, 34, 36 | divcanap1d 8835 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 38 | eqcomd 2202 |
. . . . . 6
|
| 40 | 39 | oveq2d 5941 |
. . . . 5
|
| 41 | nndivdvds 11978 |
. . . . . . . . 9
| |
| 42 | 41 | biimp3a 1356 |
. . . . . . . 8
|
| 43 | 42 | nnzd 9464 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | mulgcdr 12210 |
. . . . . 6
| |
| 46 | 16, 44, 10, 45 | syl3anc 1249 |
. . . . 5
|
| 47 | simprr 531 |
. . . . . . 7
| |
| 48 | 47 | oveq1d 5940 |
. . . . . 6
|
| 49 | 34 | mulid2d 8062 |
. . . . . . 7
|
| 50 | 49 | adantr 276 |
. . . . . 6
|
| 51 | 48, 50 | eqtrd 2229 |
. . . . 5
|
| 52 | 40, 46, 51 | 3eqtrd 2233 |
. . . 4
|
| 53 | oveq1 5932 |
. . . . . 6
| |
| 54 | 53 | eqeq1d 2205 |
. . . . 5
|
| 55 | hashgcdlem.b |
. . . . 5
| |
| 56 | 54, 55 | elrab2 2923 |
. . . 4
|
| 57 | 30, 52, 56 | sylanbrc 417 |
. . 3
|
| 58 | 5, 57 | sylan2b 287 |
. 2
|
| 59 | oveq1 5932 |
. . . . 5
| |
| 60 | 59 | eqeq1d 2205 |
. . . 4
|
| 61 | 60, 55 | elrab2 2923 |
. . 3
|
| 62 | simprr 531 |
. . . . . . . 8
| |
| 63 | elfzoelz 10239 |
. . . . . . . . . . 11
| |
| 64 | 63 | ad2antrl 490 |
. . . . . . . . . 10
|
| 65 | simpl1 1002 |
. . . . . . . . . . 11
| |
| 66 | 65 | nnzd 9464 |
. . . . . . . . . 10
|
| 67 | gcddvds 12155 |
. . . . . . . . . 10
| |
| 68 | 64, 66, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 68 | simpld 112 |
. . . . . . . 8
|
| 70 | 62, 69 | eqbrtrrd 4058 |
. . . . . . 7
|
| 71 | nnz 9362 |
. . . . . . . . . 10
| |
| 72 | 71 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 73 | 72 | adantr 276 |
. . . . . . . 8
|
| 74 | nnne0 9035 |
. . . . . . . . . 10
| |
| 75 | 74 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 76 | 75 | adantr 276 |
. . . . . . . 8
|
| 77 | dvdsval2 11972 |
. . . . . . . 8
| |
| 78 | 73, 76, 64, 77 | syl3anc 1249 |
. . . . . . 7
|
| 79 | 70, 78 | mpbid 147 |
. . . . . 6
|
| 80 | elfzofz 10255 |
. . . . . . . . 9
| |
| 81 | 80 | ad2antrl 490 |
. . . . . . . 8
|
| 82 | elfznn0 10206 |
. . . . . . . 8
| |
| 83 | nn0re 9275 |
. . . . . . . . 9
| |
| 84 | nn0ge0 9291 |
. . . . . . . . 9
| |
| 85 | 83, 84 | jca 306 |
. . . . . . . 8
|
| 86 | 81, 82, 85 | 3syl 17 |
. . . . . . 7
|
| 87 | 24 | adantr 276 |
. . . . . . 7
|
| 88 | divge0 8917 |
. . . . . . 7
| |
| 89 | 86, 87, 88 | syl2anc 411 |
. . . . . 6
|
| 90 | elnn0z 9356 |
. . . . . 6
| |
| 91 | 79, 89, 90 | sylanbrc 417 |
. . . . 5
|
| 92 | 42 | adantr 276 |
. . . . 5
|
| 93 | elfzolt2 10249 |
. . . . . . 7
| |
| 94 | 93 | ad2antrl 490 |
. . . . . 6
|
| 95 | 64 | zred 9465 |
. . . . . . 7
|
| 96 | 19 | adantr 276 |
. . . . . . 7
|
| 97 | ltdiv1 8912 |
. . . . . . 7
| |
| 98 | 95, 96, 87, 97 | syl3anc 1249 |
. . . . . 6
|
| 99 | 94, 98 | mpbid 147 |
. . . . 5
|
| 100 | elfzo0 10275 |
. . . . 5
| |
| 101 | 91, 92, 99, 100 | syl3anbrc 1183 |
. . . 4
|
| 102 | 62 | oveq1d 5940 |
. . . . 5
|
| 103 | simpl2 1003 |
. . . . . 6
| |
| 104 | simpl3 1004 |
. . . . . 6
| |
| 105 | gcddiv 12211 |
. . . . . 6
| |
| 106 | 64, 66, 103, 70, 104, 105 | syl32anc 1257 |
. . . . 5
|
| 107 | 34, 36 | dividapd 8830 |
. . . . . 6
|
| 108 | 107 | adantr 276 |
. . . . 5
|
| 109 | 102, 106, 108 | 3eqtr3d 2237 |
. . . 4
|
| 110 | oveq1 5932 |
. . . . . 6
| |
| 111 | 110 | eqeq1d 2205 |
. . . . 5
|
| 112 | 111, 4 | elrab2 2923 |
. . . 4
|
| 113 | 101, 109, 112 | sylanbrc 417 |
. . 3
|
| 114 | 61, 113 | sylan2b 287 |
. 2
|
| 115 | 5 | simplbi 274 |
. . . 4
|
| 116 | 61 | simplbi 274 |
. . . 4
|
| 117 | 115, 116 | anim12i 338 |
. . 3
|
| 118 | 63 | ad2antll 491 |
. . . . . . . 8
|
| 119 | 118 | zcnd 9466 |
. . . . . . 7
|
| 120 | 34 | adantr 276 |
. . . . . . 7
|
| 121 | 36 | adantr 276 |
. . . . . . 7
|
| 122 | 119, 120, 121 | divcanap1d 8835 |
. . . . . 6
|
| 123 | 122 | eqcomd 2202 |
. . . . 5
|
| 124 | oveq1 5932 |
. . . . . 6
| |
| 125 | 124 | eqeq2d 2208 |
. . . . 5
|
| 126 | 123, 125 | syl5ibrcom 157 |
. . . 4
|
| 127 | 15 | ad2antrl 490 |
. . . . . . . 8
|
| 128 | 127 | zcnd 9466 |
. . . . . . 7
|
| 129 | 128, 120, 121 | divcanap4d 8840 |
. . . . . 6
|
| 130 | 129 | eqcomd 2202 |
. . . . 5
|
| 131 | oveq1 5932 |
. . . . . 6
| |
| 132 | 131 | eqeq2d 2208 |
. . . . 5
|
| 133 | 130, 132 | syl5ibrcom 157 |
. . . 4
|
| 134 | 126, 133 | impbid 129 |
. . 3
|
| 135 | 117, 134 | sylan2 286 |
. 2
|
| 136 | 1, 58, 114, 135 | f1o2d 6132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-dvds 11970 df-gcd 12146 |
| This theorem is referenced by: hashgcdeq 12433 |
| Copyright terms: Public domain | W3C validator |