| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashgcdlem | Unicode version | ||
| Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| hashgcdlem.a |
|
| hashgcdlem.b |
|
| hashgcdlem.f |
|
| Ref | Expression |
|---|---|
| hashgcdlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgcdlem.f |
. 2
| |
| 2 | oveq1 6007 |
. . . . 5
| |
| 3 | 2 | eqeq1d 2238 |
. . . 4
|
| 4 | hashgcdlem.a |
. . . 4
| |
| 5 | 3, 4 | elrab2 2962 |
. . 3
|
| 6 | elfzonn0 10382 |
. . . . . . 7
| |
| 7 | 6 | ad2antrl 490 |
. . . . . 6
|
| 8 | nnnn0 9372 |
. . . . . . . 8
| |
| 9 | 8 | 3ad2ant2 1043 |
. . . . . . 7
|
| 10 | 9 | adantr 276 |
. . . . . 6
|
| 11 | 7, 10 | nn0mulcld 9423 |
. . . . 5
|
| 12 | simpl1 1024 |
. . . . 5
| |
| 13 | elfzolt2 10349 |
. . . . . . 7
| |
| 14 | 13 | ad2antrl 490 |
. . . . . 6
|
| 15 | elfzoelz 10339 |
. . . . . . . . 9
| |
| 16 | 15 | ad2antrl 490 |
. . . . . . . 8
|
| 17 | 16 | zred 9565 |
. . . . . . 7
|
| 18 | nnre 9113 |
. . . . . . . . 9
| |
| 19 | 18 | 3ad2ant1 1042 |
. . . . . . . 8
|
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | nnre 9113 |
. . . . . . . . . 10
| |
| 22 | nngt0 9131 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | jca 306 |
. . . . . . . . 9
|
| 24 | 23 | 3ad2ant2 1043 |
. . . . . . . 8
|
| 25 | 24 | adantr 276 |
. . . . . . 7
|
| 26 | ltmuldiv 9017 |
. . . . . . 7
| |
| 27 | 17, 20, 25, 26 | syl3anc 1271 |
. . . . . 6
|
| 28 | 14, 27 | mpbird 167 |
. . . . 5
|
| 29 | elfzo0 10378 |
. . . . 5
| |
| 30 | 11, 12, 28, 29 | syl3anbrc 1205 |
. . . 4
|
| 31 | nncn 9114 |
. . . . . . . . . 10
| |
| 32 | 31 | 3ad2ant1 1042 |
. . . . . . . . 9
|
| 33 | nncn 9114 |
. . . . . . . . . 10
| |
| 34 | 33 | 3ad2ant2 1043 |
. . . . . . . . 9
|
| 35 | nnap0 9135 |
. . . . . . . . . 10
| |
| 36 | 35 | 3ad2ant2 1043 |
. . . . . . . . 9
|
| 37 | 32, 34, 36 | divcanap1d 8934 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 38 | eqcomd 2235 |
. . . . . 6
|
| 40 | 39 | oveq2d 6016 |
. . . . 5
|
| 41 | nndivdvds 12302 |
. . . . . . . . 9
| |
| 42 | 41 | biimp3a 1379 |
. . . . . . . 8
|
| 43 | 42 | nnzd 9564 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | mulgcdr 12534 |
. . . . . 6
| |
| 46 | 16, 44, 10, 45 | syl3anc 1271 |
. . . . 5
|
| 47 | simprr 531 |
. . . . . . 7
| |
| 48 | 47 | oveq1d 6015 |
. . . . . 6
|
| 49 | 34 | mulid2d 8161 |
. . . . . . 7
|
| 50 | 49 | adantr 276 |
. . . . . 6
|
| 51 | 48, 50 | eqtrd 2262 |
. . . . 5
|
| 52 | 40, 46, 51 | 3eqtrd 2266 |
. . . 4
|
| 53 | oveq1 6007 |
. . . . . 6
| |
| 54 | 53 | eqeq1d 2238 |
. . . . 5
|
| 55 | hashgcdlem.b |
. . . . 5
| |
| 56 | 54, 55 | elrab2 2962 |
. . . 4
|
| 57 | 30, 52, 56 | sylanbrc 417 |
. . 3
|
| 58 | 5, 57 | sylan2b 287 |
. 2
|
| 59 | oveq1 6007 |
. . . . 5
| |
| 60 | 59 | eqeq1d 2238 |
. . . 4
|
| 61 | 60, 55 | elrab2 2962 |
. . 3
|
| 62 | simprr 531 |
. . . . . . . 8
| |
| 63 | elfzoelz 10339 |
. . . . . . . . . . 11
| |
| 64 | 63 | ad2antrl 490 |
. . . . . . . . . 10
|
| 65 | simpl1 1024 |
. . . . . . . . . . 11
| |
| 66 | 65 | nnzd 9564 |
. . . . . . . . . 10
|
| 67 | gcddvds 12479 |
. . . . . . . . . 10
| |
| 68 | 64, 66, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 68 | simpld 112 |
. . . . . . . 8
|
| 70 | 62, 69 | eqbrtrrd 4106 |
. . . . . . 7
|
| 71 | nnz 9461 |
. . . . . . . . . 10
| |
| 72 | 71 | 3ad2ant2 1043 |
. . . . . . . . 9
|
| 73 | 72 | adantr 276 |
. . . . . . . 8
|
| 74 | nnne0 9134 |
. . . . . . . . . 10
| |
| 75 | 74 | 3ad2ant2 1043 |
. . . . . . . . 9
|
| 76 | 75 | adantr 276 |
. . . . . . . 8
|
| 77 | dvdsval2 12296 |
. . . . . . . 8
| |
| 78 | 73, 76, 64, 77 | syl3anc 1271 |
. . . . . . 7
|
| 79 | 70, 78 | mpbid 147 |
. . . . . 6
|
| 80 | elfzofz 10355 |
. . . . . . . . 9
| |
| 81 | 80 | ad2antrl 490 |
. . . . . . . 8
|
| 82 | elfznn0 10306 |
. . . . . . . 8
| |
| 83 | nn0re 9374 |
. . . . . . . . 9
| |
| 84 | nn0ge0 9390 |
. . . . . . . . 9
| |
| 85 | 83, 84 | jca 306 |
. . . . . . . 8
|
| 86 | 81, 82, 85 | 3syl 17 |
. . . . . . 7
|
| 87 | 24 | adantr 276 |
. . . . . . 7
|
| 88 | divge0 9016 |
. . . . . . 7
| |
| 89 | 86, 87, 88 | syl2anc 411 |
. . . . . 6
|
| 90 | elnn0z 9455 |
. . . . . 6
| |
| 91 | 79, 89, 90 | sylanbrc 417 |
. . . . 5
|
| 92 | 42 | adantr 276 |
. . . . 5
|
| 93 | elfzolt2 10349 |
. . . . . . 7
| |
| 94 | 93 | ad2antrl 490 |
. . . . . 6
|
| 95 | 64 | zred 9565 |
. . . . . . 7
|
| 96 | 19 | adantr 276 |
. . . . . . 7
|
| 97 | ltdiv1 9011 |
. . . . . . 7
| |
| 98 | 95, 96, 87, 97 | syl3anc 1271 |
. . . . . 6
|
| 99 | 94, 98 | mpbid 147 |
. . . . 5
|
| 100 | elfzo0 10378 |
. . . . 5
| |
| 101 | 91, 92, 99, 100 | syl3anbrc 1205 |
. . . 4
|
| 102 | 62 | oveq1d 6015 |
. . . . 5
|
| 103 | simpl2 1025 |
. . . . . 6
| |
| 104 | simpl3 1026 |
. . . . . 6
| |
| 105 | gcddiv 12535 |
. . . . . 6
| |
| 106 | 64, 66, 103, 70, 104, 105 | syl32anc 1279 |
. . . . 5
|
| 107 | 34, 36 | dividapd 8929 |
. . . . . 6
|
| 108 | 107 | adantr 276 |
. . . . 5
|
| 109 | 102, 106, 108 | 3eqtr3d 2270 |
. . . 4
|
| 110 | oveq1 6007 |
. . . . . 6
| |
| 111 | 110 | eqeq1d 2238 |
. . . . 5
|
| 112 | 111, 4 | elrab2 2962 |
. . . 4
|
| 113 | 101, 109, 112 | sylanbrc 417 |
. . 3
|
| 114 | 61, 113 | sylan2b 287 |
. 2
|
| 115 | 5 | simplbi 274 |
. . . 4
|
| 116 | 61 | simplbi 274 |
. . . 4
|
| 117 | 115, 116 | anim12i 338 |
. . 3
|
| 118 | 63 | ad2antll 491 |
. . . . . . . 8
|
| 119 | 118 | zcnd 9566 |
. . . . . . 7
|
| 120 | 34 | adantr 276 |
. . . . . . 7
|
| 121 | 36 | adantr 276 |
. . . . . . 7
|
| 122 | 119, 120, 121 | divcanap1d 8934 |
. . . . . 6
|
| 123 | 122 | eqcomd 2235 |
. . . . 5
|
| 124 | oveq1 6007 |
. . . . . 6
| |
| 125 | 124 | eqeq2d 2241 |
. . . . 5
|
| 126 | 123, 125 | syl5ibrcom 157 |
. . . 4
|
| 127 | 15 | ad2antrl 490 |
. . . . . . . 8
|
| 128 | 127 | zcnd 9566 |
. . . . . . 7
|
| 129 | 128, 120, 121 | divcanap4d 8939 |
. . . . . 6
|
| 130 | 129 | eqcomd 2235 |
. . . . 5
|
| 131 | oveq1 6007 |
. . . . . 6
| |
| 132 | 131 | eqeq2d 2241 |
. . . . 5
|
| 133 | 130, 132 | syl5ibrcom 157 |
. . . 4
|
| 134 | 126, 133 | impbid 129 |
. . 3
|
| 135 | 117, 134 | sylan2 286 |
. 2
|
| 136 | 1, 58, 114, 135 | f1o2d 6209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-sup 7147 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 df-gcd 12470 |
| This theorem is referenced by: hashgcdeq 12757 |
| Copyright terms: Public domain | W3C validator |