| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashgcdlem | Unicode version | ||
| Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| hashgcdlem.a |
|
| hashgcdlem.b |
|
| hashgcdlem.f |
|
| Ref | Expression |
|---|---|
| hashgcdlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgcdlem.f |
. 2
| |
| 2 | oveq1 5950 |
. . . . 5
| |
| 3 | 2 | eqeq1d 2213 |
. . . 4
|
| 4 | hashgcdlem.a |
. . . 4
| |
| 5 | 3, 4 | elrab2 2931 |
. . 3
|
| 6 | elfzonn0 10308 |
. . . . . . 7
| |
| 7 | 6 | ad2antrl 490 |
. . . . . 6
|
| 8 | nnnn0 9301 |
. . . . . . . 8
| |
| 9 | 8 | 3ad2ant2 1021 |
. . . . . . 7
|
| 10 | 9 | adantr 276 |
. . . . . 6
|
| 11 | 7, 10 | nn0mulcld 9352 |
. . . . 5
|
| 12 | simpl1 1002 |
. . . . 5
| |
| 13 | elfzolt2 10278 |
. . . . . . 7
| |
| 14 | 13 | ad2antrl 490 |
. . . . . 6
|
| 15 | elfzoelz 10268 |
. . . . . . . . 9
| |
| 16 | 15 | ad2antrl 490 |
. . . . . . . 8
|
| 17 | 16 | zred 9494 |
. . . . . . 7
|
| 18 | nnre 9042 |
. . . . . . . . 9
| |
| 19 | 18 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 20 | 19 | adantr 276 |
. . . . . . 7
|
| 21 | nnre 9042 |
. . . . . . . . . 10
| |
| 22 | nngt0 9060 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | jca 306 |
. . . . . . . . 9
|
| 24 | 23 | 3ad2ant2 1021 |
. . . . . . . 8
|
| 25 | 24 | adantr 276 |
. . . . . . 7
|
| 26 | ltmuldiv 8946 |
. . . . . . 7
| |
| 27 | 17, 20, 25, 26 | syl3anc 1249 |
. . . . . 6
|
| 28 | 14, 27 | mpbird 167 |
. . . . 5
|
| 29 | elfzo0 10304 |
. . . . 5
| |
| 30 | 11, 12, 28, 29 | syl3anbrc 1183 |
. . . 4
|
| 31 | nncn 9043 |
. . . . . . . . . 10
| |
| 32 | 31 | 3ad2ant1 1020 |
. . . . . . . . 9
|
| 33 | nncn 9043 |
. . . . . . . . . 10
| |
| 34 | 33 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 35 | nnap0 9064 |
. . . . . . . . . 10
| |
| 36 | 35 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 37 | 32, 34, 36 | divcanap1d 8863 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 38 | eqcomd 2210 |
. . . . . 6
|
| 40 | 39 | oveq2d 5959 |
. . . . 5
|
| 41 | nndivdvds 12049 |
. . . . . . . . 9
| |
| 42 | 41 | biimp3a 1357 |
. . . . . . . 8
|
| 43 | 42 | nnzd 9493 |
. . . . . . 7
|
| 44 | 43 | adantr 276 |
. . . . . 6
|
| 45 | mulgcdr 12281 |
. . . . . 6
| |
| 46 | 16, 44, 10, 45 | syl3anc 1249 |
. . . . 5
|
| 47 | simprr 531 |
. . . . . . 7
| |
| 48 | 47 | oveq1d 5958 |
. . . . . 6
|
| 49 | 34 | mulid2d 8090 |
. . . . . . 7
|
| 50 | 49 | adantr 276 |
. . . . . 6
|
| 51 | 48, 50 | eqtrd 2237 |
. . . . 5
|
| 52 | 40, 46, 51 | 3eqtrd 2241 |
. . . 4
|
| 53 | oveq1 5950 |
. . . . . 6
| |
| 54 | 53 | eqeq1d 2213 |
. . . . 5
|
| 55 | hashgcdlem.b |
. . . . 5
| |
| 56 | 54, 55 | elrab2 2931 |
. . . 4
|
| 57 | 30, 52, 56 | sylanbrc 417 |
. . 3
|
| 58 | 5, 57 | sylan2b 287 |
. 2
|
| 59 | oveq1 5950 |
. . . . 5
| |
| 60 | 59 | eqeq1d 2213 |
. . . 4
|
| 61 | 60, 55 | elrab2 2931 |
. . 3
|
| 62 | simprr 531 |
. . . . . . . 8
| |
| 63 | elfzoelz 10268 |
. . . . . . . . . . 11
| |
| 64 | 63 | ad2antrl 490 |
. . . . . . . . . 10
|
| 65 | simpl1 1002 |
. . . . . . . . . . 11
| |
| 66 | 65 | nnzd 9493 |
. . . . . . . . . 10
|
| 67 | gcddvds 12226 |
. . . . . . . . . 10
| |
| 68 | 64, 66, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 68 | simpld 112 |
. . . . . . . 8
|
| 70 | 62, 69 | eqbrtrrd 4067 |
. . . . . . 7
|
| 71 | nnz 9390 |
. . . . . . . . . 10
| |
| 72 | 71 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 73 | 72 | adantr 276 |
. . . . . . . 8
|
| 74 | nnne0 9063 |
. . . . . . . . . 10
| |
| 75 | 74 | 3ad2ant2 1021 |
. . . . . . . . 9
|
| 76 | 75 | adantr 276 |
. . . . . . . 8
|
| 77 | dvdsval2 12043 |
. . . . . . . 8
| |
| 78 | 73, 76, 64, 77 | syl3anc 1249 |
. . . . . . 7
|
| 79 | 70, 78 | mpbid 147 |
. . . . . 6
|
| 80 | elfzofz 10284 |
. . . . . . . . 9
| |
| 81 | 80 | ad2antrl 490 |
. . . . . . . 8
|
| 82 | elfznn0 10235 |
. . . . . . . 8
| |
| 83 | nn0re 9303 |
. . . . . . . . 9
| |
| 84 | nn0ge0 9319 |
. . . . . . . . 9
| |
| 85 | 83, 84 | jca 306 |
. . . . . . . 8
|
| 86 | 81, 82, 85 | 3syl 17 |
. . . . . . 7
|
| 87 | 24 | adantr 276 |
. . . . . . 7
|
| 88 | divge0 8945 |
. . . . . . 7
| |
| 89 | 86, 87, 88 | syl2anc 411 |
. . . . . 6
|
| 90 | elnn0z 9384 |
. . . . . 6
| |
| 91 | 79, 89, 90 | sylanbrc 417 |
. . . . 5
|
| 92 | 42 | adantr 276 |
. . . . 5
|
| 93 | elfzolt2 10278 |
. . . . . . 7
| |
| 94 | 93 | ad2antrl 490 |
. . . . . 6
|
| 95 | 64 | zred 9494 |
. . . . . . 7
|
| 96 | 19 | adantr 276 |
. . . . . . 7
|
| 97 | ltdiv1 8940 |
. . . . . . 7
| |
| 98 | 95, 96, 87, 97 | syl3anc 1249 |
. . . . . 6
|
| 99 | 94, 98 | mpbid 147 |
. . . . 5
|
| 100 | elfzo0 10304 |
. . . . 5
| |
| 101 | 91, 92, 99, 100 | syl3anbrc 1183 |
. . . 4
|
| 102 | 62 | oveq1d 5958 |
. . . . 5
|
| 103 | simpl2 1003 |
. . . . . 6
| |
| 104 | simpl3 1004 |
. . . . . 6
| |
| 105 | gcddiv 12282 |
. . . . . 6
| |
| 106 | 64, 66, 103, 70, 104, 105 | syl32anc 1257 |
. . . . 5
|
| 107 | 34, 36 | dividapd 8858 |
. . . . . 6
|
| 108 | 107 | adantr 276 |
. . . . 5
|
| 109 | 102, 106, 108 | 3eqtr3d 2245 |
. . . 4
|
| 110 | oveq1 5950 |
. . . . . 6
| |
| 111 | 110 | eqeq1d 2213 |
. . . . 5
|
| 112 | 111, 4 | elrab2 2931 |
. . . 4
|
| 113 | 101, 109, 112 | sylanbrc 417 |
. . 3
|
| 114 | 61, 113 | sylan2b 287 |
. 2
|
| 115 | 5 | simplbi 274 |
. . . 4
|
| 116 | 61 | simplbi 274 |
. . . 4
|
| 117 | 115, 116 | anim12i 338 |
. . 3
|
| 118 | 63 | ad2antll 491 |
. . . . . . . 8
|
| 119 | 118 | zcnd 9495 |
. . . . . . 7
|
| 120 | 34 | adantr 276 |
. . . . . . 7
|
| 121 | 36 | adantr 276 |
. . . . . . 7
|
| 122 | 119, 120, 121 | divcanap1d 8863 |
. . . . . 6
|
| 123 | 122 | eqcomd 2210 |
. . . . 5
|
| 124 | oveq1 5950 |
. . . . . 6
| |
| 125 | 124 | eqeq2d 2216 |
. . . . 5
|
| 126 | 123, 125 | syl5ibrcom 157 |
. . . 4
|
| 127 | 15 | ad2antrl 490 |
. . . . . . . 8
|
| 128 | 127 | zcnd 9495 |
. . . . . . 7
|
| 129 | 128, 120, 121 | divcanap4d 8868 |
. . . . . 6
|
| 130 | 129 | eqcomd 2210 |
. . . . 5
|
| 131 | oveq1 5950 |
. . . . . 6
| |
| 132 | 131 | eqeq2d 2216 |
. . . . 5
|
| 133 | 130, 132 | syl5ibrcom 157 |
. . . 4
|
| 134 | 126, 133 | impbid 129 |
. . 3
|
| 135 | 117, 134 | sylan2 286 |
. 2
|
| 136 | 1, 58, 114, 135 | f1o2d 6150 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-sup 7085 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fz 10130 df-fzo 10264 df-fl 10411 df-mod 10466 df-seqfrec 10591 df-exp 10682 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-dvds 12041 df-gcd 12217 |
| This theorem is referenced by: hashgcdeq 12504 |
| Copyright terms: Public domain | W3C validator |