ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmulgcd Unicode version

Theorem dvdsmulgcd 11980
Description: Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsmulgcd  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  <->  A 
||  ( B  x.  ( C  gcd  A ) ) ) )

Proof of Theorem dvdsmulgcd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 525 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  C  e.  ZZ )
2 dvdszrcl 11754 . . . . . 6  |-  ( A 
||  ( B  x.  C )  ->  ( A  e.  ZZ  /\  ( B  x.  C )  e.  ZZ ) )
32adantl 275 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  ( A  e.  ZZ  /\  ( B  x.  C )  e.  ZZ ) )
43simpld 111 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  A  e.  ZZ )
5 bezout 11966 . . . 4  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) ) )
61, 4, 5syl2anc 409 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) ) )
74adantr 274 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  e.  ZZ )
8 simplll 528 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  B  e.  ZZ )
9 simpllr 529 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  C  e.  ZZ )
10 simprl 526 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
119, 10zmulcld 9340 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( C  x.  x )  e.  ZZ )
128, 11zmulcld 9340 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( C  x.  x
) )  e.  ZZ )
13 simprr 527 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
147, 13zmulcld 9340 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  x.  y )  e.  ZZ )
158, 14zmulcld 9340 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( A  x.  y
) )  e.  ZZ )
16 simplr 525 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  C )
)
178, 9zmulcld 9340 . . . . . . . . . 10  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  C )  e.  ZZ )
18 dvdsmultr1 11793 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( B  x.  C
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  ->  A  ||  ( ( B  x.  C )  x.  x ) ) )
197, 17, 10, 18syl3anc 1233 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  ||  ( B  x.  C
)  ->  A  ||  (
( B  x.  C
)  x.  x ) ) )
2016, 19mpd 13 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  (
( B  x.  C
)  x.  x ) )
218zcnd 9335 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  B  e.  CC )
229zcnd 9335 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  C  e.  CC )
2310zcnd 9335 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  CC )
2421, 22, 23mulassd 7943 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( B  x.  C )  x.  x )  =  ( B  x.  ( C  x.  x ) ) )
2520, 24breqtrd 4015 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( C  x.  x ) ) )
268, 13zmulcld 9340 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  y )  e.  ZZ )
27 dvdsmul1 11775 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( B  x.  y
)  e.  ZZ )  ->  A  ||  ( A  x.  ( B  x.  y ) ) )
287, 26, 27syl2anc 409 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( A  x.  ( B  x.  y ) ) )
297zcnd 9335 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  e.  CC )
3013zcnd 9335 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  CC )
3121, 29, 30mul12d 8071 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( A  x.  y
) )  =  ( A  x.  ( B  x.  y ) ) )
3228, 31breqtrrd 4017 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( A  x.  y ) ) )
33 dvds2add 11787 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( B  x.  ( C  x.  x )
)  e.  ZZ  /\  ( B  x.  ( A  x.  y )
)  e.  ZZ )  ->  ( ( A 
||  ( B  x.  ( C  x.  x
) )  /\  A  ||  ( B  x.  ( A  x.  y )
) )  ->  A  ||  ( ( B  x.  ( C  x.  x
) )  +  ( B  x.  ( A  x.  y ) ) ) ) )
3433imp 123 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  ( B  x.  ( C  x.  x )
)  e.  ZZ  /\  ( B  x.  ( A  x.  y )
)  e.  ZZ )  /\  ( A  ||  ( B  x.  ( C  x.  x )
)  /\  A  ||  ( B  x.  ( A  x.  y ) ) ) )  ->  A  ||  (
( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
357, 12, 15, 25, 32, 34syl32anc 1241 . . . . . 6  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  (
( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
3611zcnd 9335 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( C  x.  x )  e.  CC )
3714zcnd 9335 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  x.  y )  e.  CC )
3821, 36, 37adddid 7944 . . . . . 6  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y ) ) )  =  ( ( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
3935, 38breqtrrd 4017 . . . . 5  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y ) ) ) )
40 oveq2 5861 . . . . . 6  |-  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y
) )  ->  ( B  x.  ( C  gcd  A ) )  =  ( B  x.  (
( C  x.  x
)  +  ( A  x.  y ) ) ) )
4140breq2d 4001 . . . . 5  |-  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y
) )  ->  ( A  ||  ( B  x.  ( C  gcd  A ) )  <->  A  ||  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y
) ) ) ) )
4239, 41syl5ibrcom 156 . . . 4  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) ) )
4342rexlimdvva 2595 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) ) )
446, 43mpd 13 . 2  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  A  ||  ( B  x.  ( C  gcd  A ) ) )
45 dvdszrcl 11754 . . . . 5  |-  ( A 
||  ( B  x.  ( C  gcd  A ) )  ->  ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ ) )
4645adantl 275 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ ) )
4746simpld 111 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  e.  ZZ )
4846simprd 113 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  ( C  gcd  A ) )  e.  ZZ )
49 zmulcl 9265 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C
)  e.  ZZ )
5049adantr 274 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  C )  e.  ZZ )
51 simpr 109 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) )
52 simplr 525 . . . . . 6  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  C  e.  ZZ )
53 gcddvds 11918 . . . . . 6  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( C  gcd  A )  ||  C  /\  ( C  gcd  A ) 
||  A ) )
5452, 47, 53syl2anc 409 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( ( C  gcd  A )  ||  C  /\  ( C  gcd  A )  ||  A ) )
5554simpld 111 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  ||  C )
5652, 47gcdcld 11923 . . . . . 6  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  e.  NN0 )
5756nn0zd 9332 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  e.  ZZ )
58 simpll 524 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  B  e.  ZZ )
59 dvdscmul 11780 . . . . 5  |-  ( ( ( C  gcd  A
)  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( C  gcd  A
)  ||  C  ->  ( B  x.  ( C  gcd  A ) ) 
||  ( B  x.  C ) ) )
6057, 52, 58, 59syl3anc 1233 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( ( C  gcd  A )  ||  C  ->  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C ) ) )
6155, 60mpd 13 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C ) )
62 dvdstr 11790 . . . 4  |-  ( ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ  /\  ( B  x.  C )  e.  ZZ )  ->  (
( A  ||  ( B  x.  ( C  gcd  A ) )  /\  ( B  x.  ( C  gcd  A ) ) 
||  ( B  x.  C ) )  ->  A  ||  ( B  x.  C ) ) )
6362imp 123 . . 3  |-  ( ( ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ  /\  ( B  x.  C )  e.  ZZ )  /\  ( A  ||  ( B  x.  ( C  gcd  A ) )  /\  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C )
) )  ->  A  ||  ( B  x.  C
) )
6447, 48, 50, 51, 61, 63syl32anc 1241 . 2  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  ||  ( B  x.  C )
)
6544, 64impbida 591 1  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  <->  A 
||  ( B  x.  ( C  gcd  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989  (class class class)co 5853    + caddc 7777    x. cmul 7779   ZZcz 9212    || cdvds 11749    gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  coprmdvds  12046
  Copyright terms: Public domain W3C validator