Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsmulgcd | Unicode version |
Description: Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
dvdsmulgcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 520 | . . . 4 | |
2 | dvdszrcl 11732 | . . . . . 6 | |
3 | 2 | adantl 275 | . . . . 5 |
4 | 3 | simpld 111 | . . . 4 |
5 | bezout 11944 | . . . 4 | |
6 | 1, 4, 5 | syl2anc 409 | . . 3 |
7 | 4 | adantr 274 | . . . . . . 7 |
8 | simplll 523 | . . . . . . . 8 | |
9 | simpllr 524 | . . . . . . . . 9 | |
10 | simprl 521 | . . . . . . . . 9 | |
11 | 9, 10 | zmulcld 9319 | . . . . . . . 8 |
12 | 8, 11 | zmulcld 9319 | . . . . . . 7 |
13 | simprr 522 | . . . . . . . . 9 | |
14 | 7, 13 | zmulcld 9319 | . . . . . . . 8 |
15 | 8, 14 | zmulcld 9319 | . . . . . . 7 |
16 | simplr 520 | . . . . . . . . 9 | |
17 | 8, 9 | zmulcld 9319 | . . . . . . . . . 10 |
18 | dvdsmultr1 11771 | . . . . . . . . . 10 | |
19 | 7, 17, 10, 18 | syl3anc 1228 | . . . . . . . . 9 |
20 | 16, 19 | mpd 13 | . . . . . . . 8 |
21 | 8 | zcnd 9314 | . . . . . . . . 9 |
22 | 9 | zcnd 9314 | . . . . . . . . 9 |
23 | 10 | zcnd 9314 | . . . . . . . . 9 |
24 | 21, 22, 23 | mulassd 7922 | . . . . . . . 8 |
25 | 20, 24 | breqtrd 4008 | . . . . . . 7 |
26 | 8, 13 | zmulcld 9319 | . . . . . . . . 9 |
27 | dvdsmul1 11753 | . . . . . . . . 9 | |
28 | 7, 26, 27 | syl2anc 409 | . . . . . . . 8 |
29 | 7 | zcnd 9314 | . . . . . . . . 9 |
30 | 13 | zcnd 9314 | . . . . . . . . 9 |
31 | 21, 29, 30 | mul12d 8050 | . . . . . . . 8 |
32 | 28, 31 | breqtrrd 4010 | . . . . . . 7 |
33 | dvds2add 11765 | . . . . . . . 8 | |
34 | 33 | imp 123 | . . . . . . 7 |
35 | 7, 12, 15, 25, 32, 34 | syl32anc 1236 | . . . . . 6 |
36 | 11 | zcnd 9314 | . . . . . . 7 |
37 | 14 | zcnd 9314 | . . . . . . 7 |
38 | 21, 36, 37 | adddid 7923 | . . . . . 6 |
39 | 35, 38 | breqtrrd 4010 | . . . . 5 |
40 | oveq2 5850 | . . . . . 6 | |
41 | 40 | breq2d 3994 | . . . . 5 |
42 | 39, 41 | syl5ibrcom 156 | . . . 4 |
43 | 42 | rexlimdvva 2591 | . . 3 |
44 | 6, 43 | mpd 13 | . 2 |
45 | dvdszrcl 11732 | . . . . 5 | |
46 | 45 | adantl 275 | . . . 4 |
47 | 46 | simpld 111 | . . 3 |
48 | 46 | simprd 113 | . . 3 |
49 | zmulcl 9244 | . . . 4 | |
50 | 49 | adantr 274 | . . 3 |
51 | simpr 109 | . . 3 | |
52 | simplr 520 | . . . . . 6 | |
53 | gcddvds 11896 | . . . . . 6 | |
54 | 52, 47, 53 | syl2anc 409 | . . . . 5 |
55 | 54 | simpld 111 | . . . 4 |
56 | 52, 47 | gcdcld 11901 | . . . . . 6 |
57 | 56 | nn0zd 9311 | . . . . 5 |
58 | simpll 519 | . . . . 5 | |
59 | dvdscmul 11758 | . . . . 5 | |
60 | 57, 52, 58, 59 | syl3anc 1228 | . . . 4 |
61 | 55, 60 | mpd 13 | . . 3 |
62 | dvdstr 11768 | . . . 4 | |
63 | 62 | imp 123 | . . 3 |
64 | 47, 48, 50, 51, 61, 63 | syl32anc 1236 | . 2 |
65 | 44, 64 | impbida 586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 (class class class)co 5842 caddc 7756 cmul 7758 cz 9191 cdvds 11727 cgcd 11875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 |
This theorem is referenced by: coprmdvds 12024 |
Copyright terms: Public domain | W3C validator |