Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsmulgcd | Unicode version |
Description: Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
dvdsmulgcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 520 | . . . 4 | |
2 | dvdszrcl 11681 | . . . . . 6 | |
3 | 2 | adantl 275 | . . . . 5 |
4 | 3 | simpld 111 | . . . 4 |
5 | bezout 11886 | . . . 4 | |
6 | 1, 4, 5 | syl2anc 409 | . . 3 |
7 | 4 | adantr 274 | . . . . . . 7 |
8 | simplll 523 | . . . . . . . 8 | |
9 | simpllr 524 | . . . . . . . . 9 | |
10 | simprl 521 | . . . . . . . . 9 | |
11 | 9, 10 | zmulcld 9286 | . . . . . . . 8 |
12 | 8, 11 | zmulcld 9286 | . . . . . . 7 |
13 | simprr 522 | . . . . . . . . 9 | |
14 | 7, 13 | zmulcld 9286 | . . . . . . . 8 |
15 | 8, 14 | zmulcld 9286 | . . . . . . 7 |
16 | simplr 520 | . . . . . . . . 9 | |
17 | 8, 9 | zmulcld 9286 | . . . . . . . . . 10 |
18 | dvdsmultr1 11717 | . . . . . . . . . 10 | |
19 | 7, 17, 10, 18 | syl3anc 1220 | . . . . . . . . 9 |
20 | 16, 19 | mpd 13 | . . . . . . . 8 |
21 | 8 | zcnd 9281 | . . . . . . . . 9 |
22 | 9 | zcnd 9281 | . . . . . . . . 9 |
23 | 10 | zcnd 9281 | . . . . . . . . 9 |
24 | 21, 22, 23 | mulassd 7895 | . . . . . . . 8 |
25 | 20, 24 | breqtrd 3990 | . . . . . . 7 |
26 | 8, 13 | zmulcld 9286 | . . . . . . . . 9 |
27 | dvdsmul1 11701 | . . . . . . . . 9 | |
28 | 7, 26, 27 | syl2anc 409 | . . . . . . . 8 |
29 | 7 | zcnd 9281 | . . . . . . . . 9 |
30 | 13 | zcnd 9281 | . . . . . . . . 9 |
31 | 21, 29, 30 | mul12d 8021 | . . . . . . . 8 |
32 | 28, 31 | breqtrrd 3992 | . . . . . . 7 |
33 | dvds2add 11713 | . . . . . . . 8 | |
34 | 33 | imp 123 | . . . . . . 7 |
35 | 7, 12, 15, 25, 32, 34 | syl32anc 1228 | . . . . . 6 |
36 | 11 | zcnd 9281 | . . . . . . 7 |
37 | 14 | zcnd 9281 | . . . . . . 7 |
38 | 21, 36, 37 | adddid 7896 | . . . . . 6 |
39 | 35, 38 | breqtrrd 3992 | . . . . 5 |
40 | oveq2 5829 | . . . . . 6 | |
41 | 40 | breq2d 3977 | . . . . 5 |
42 | 39, 41 | syl5ibrcom 156 | . . . 4 |
43 | 42 | rexlimdvva 2582 | . . 3 |
44 | 6, 43 | mpd 13 | . 2 |
45 | dvdszrcl 11681 | . . . . 5 | |
46 | 45 | adantl 275 | . . . 4 |
47 | 46 | simpld 111 | . . 3 |
48 | 46 | simprd 113 | . . 3 |
49 | zmulcl 9214 | . . . 4 | |
50 | 49 | adantr 274 | . . 3 |
51 | simpr 109 | . . 3 | |
52 | simplr 520 | . . . . . 6 | |
53 | gcddvds 11838 | . . . . . 6 | |
54 | 52, 47, 53 | syl2anc 409 | . . . . 5 |
55 | 54 | simpld 111 | . . . 4 |
56 | 52, 47 | gcdcld 11843 | . . . . . 6 |
57 | 56 | nn0zd 9278 | . . . . 5 |
58 | simpll 519 | . . . . 5 | |
59 | dvdscmul 11706 | . . . . 5 | |
60 | 57, 52, 58, 59 | syl3anc 1220 | . . . 4 |
61 | 55, 60 | mpd 13 | . . 3 |
62 | dvdstr 11716 | . . . 4 | |
63 | 62 | imp 123 | . . 3 |
64 | 47, 48, 50, 51, 61, 63 | syl32anc 1228 | . 2 |
65 | 44, 64 | impbida 586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wrex 2436 class class class wbr 3965 (class class class)co 5821 caddc 7729 cmul 7731 cz 9161 cdvds 11676 cgcd 11821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 ax-caucvg 7846 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-frec 6335 df-sup 6924 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-n0 9085 df-z 9162 df-uz 9434 df-q 9522 df-rp 9554 df-fz 9906 df-fzo 10035 df-fl 10162 df-mod 10215 df-seqfrec 10338 df-exp 10412 df-cj 10735 df-re 10736 df-im 10737 df-rsqrt 10891 df-abs 10892 df-dvds 11677 df-gcd 11822 |
This theorem is referenced by: coprmdvds 11960 |
Copyright terms: Public domain | W3C validator |