Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsmulgcd | Unicode version |
Description: Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
dvdsmulgcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 525 | . . . 4 | |
2 | dvdszrcl 11754 | . . . . . 6 | |
3 | 2 | adantl 275 | . . . . 5 |
4 | 3 | simpld 111 | . . . 4 |
5 | bezout 11966 | . . . 4 | |
6 | 1, 4, 5 | syl2anc 409 | . . 3 |
7 | 4 | adantr 274 | . . . . . . 7 |
8 | simplll 528 | . . . . . . . 8 | |
9 | simpllr 529 | . . . . . . . . 9 | |
10 | simprl 526 | . . . . . . . . 9 | |
11 | 9, 10 | zmulcld 9340 | . . . . . . . 8 |
12 | 8, 11 | zmulcld 9340 | . . . . . . 7 |
13 | simprr 527 | . . . . . . . . 9 | |
14 | 7, 13 | zmulcld 9340 | . . . . . . . 8 |
15 | 8, 14 | zmulcld 9340 | . . . . . . 7 |
16 | simplr 525 | . . . . . . . . 9 | |
17 | 8, 9 | zmulcld 9340 | . . . . . . . . . 10 |
18 | dvdsmultr1 11793 | . . . . . . . . . 10 | |
19 | 7, 17, 10, 18 | syl3anc 1233 | . . . . . . . . 9 |
20 | 16, 19 | mpd 13 | . . . . . . . 8 |
21 | 8 | zcnd 9335 | . . . . . . . . 9 |
22 | 9 | zcnd 9335 | . . . . . . . . 9 |
23 | 10 | zcnd 9335 | . . . . . . . . 9 |
24 | 21, 22, 23 | mulassd 7943 | . . . . . . . 8 |
25 | 20, 24 | breqtrd 4015 | . . . . . . 7 |
26 | 8, 13 | zmulcld 9340 | . . . . . . . . 9 |
27 | dvdsmul1 11775 | . . . . . . . . 9 | |
28 | 7, 26, 27 | syl2anc 409 | . . . . . . . 8 |
29 | 7 | zcnd 9335 | . . . . . . . . 9 |
30 | 13 | zcnd 9335 | . . . . . . . . 9 |
31 | 21, 29, 30 | mul12d 8071 | . . . . . . . 8 |
32 | 28, 31 | breqtrrd 4017 | . . . . . . 7 |
33 | dvds2add 11787 | . . . . . . . 8 | |
34 | 33 | imp 123 | . . . . . . 7 |
35 | 7, 12, 15, 25, 32, 34 | syl32anc 1241 | . . . . . 6 |
36 | 11 | zcnd 9335 | . . . . . . 7 |
37 | 14 | zcnd 9335 | . . . . . . 7 |
38 | 21, 36, 37 | adddid 7944 | . . . . . 6 |
39 | 35, 38 | breqtrrd 4017 | . . . . 5 |
40 | oveq2 5861 | . . . . . 6 | |
41 | 40 | breq2d 4001 | . . . . 5 |
42 | 39, 41 | syl5ibrcom 156 | . . . 4 |
43 | 42 | rexlimdvva 2595 | . . 3 |
44 | 6, 43 | mpd 13 | . 2 |
45 | dvdszrcl 11754 | . . . . 5 | |
46 | 45 | adantl 275 | . . . 4 |
47 | 46 | simpld 111 | . . 3 |
48 | 46 | simprd 113 | . . 3 |
49 | zmulcl 9265 | . . . 4 | |
50 | 49 | adantr 274 | . . 3 |
51 | simpr 109 | . . 3 | |
52 | simplr 525 | . . . . . 6 | |
53 | gcddvds 11918 | . . . . . 6 | |
54 | 52, 47, 53 | syl2anc 409 | . . . . 5 |
55 | 54 | simpld 111 | . . . 4 |
56 | 52, 47 | gcdcld 11923 | . . . . . 6 |
57 | 56 | nn0zd 9332 | . . . . 5 |
58 | simpll 524 | . . . . 5 | |
59 | dvdscmul 11780 | . . . . 5 | |
60 | 57, 52, 58, 59 | syl3anc 1233 | . . . 4 |
61 | 55, 60 | mpd 13 | . . 3 |
62 | dvdstr 11790 | . . . 4 | |
63 | 62 | imp 123 | . . 3 |
64 | 47, 48, 50, 51, 61, 63 | syl32anc 1241 | . 2 |
65 | 44, 64 | impbida 591 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3989 (class class class)co 5853 caddc 7777 cmul 7779 cz 9212 cdvds 11749 cgcd 11897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 df-gcd 11898 |
This theorem is referenced by: coprmdvds 12046 |
Copyright terms: Public domain | W3C validator |