| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvdsmulgcd | Unicode version | ||
| Description: Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| dvdsmulgcd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simplr 528 | 
. . . 4
 | |
| 2 | dvdszrcl 11957 | 
. . . . . 6
 | |
| 3 | 2 | adantl 277 | 
. . . . 5
 | 
| 4 | 3 | simpld 112 | 
. . . 4
 | 
| 5 | bezout 12178 | 
. . . 4
 | |
| 6 | 1, 4, 5 | syl2anc 411 | 
. . 3
 | 
| 7 | 4 | adantr 276 | 
. . . . . . 7
 | 
| 8 | simplll 533 | 
. . . . . . . 8
 | |
| 9 | simpllr 534 | 
. . . . . . . . 9
 | |
| 10 | simprl 529 | 
. . . . . . . . 9
 | |
| 11 | 9, 10 | zmulcld 9454 | 
. . . . . . . 8
 | 
| 12 | 8, 11 | zmulcld 9454 | 
. . . . . . 7
 | 
| 13 | simprr 531 | 
. . . . . . . . 9
 | |
| 14 | 7, 13 | zmulcld 9454 | 
. . . . . . . 8
 | 
| 15 | 8, 14 | zmulcld 9454 | 
. . . . . . 7
 | 
| 16 | simplr 528 | 
. . . . . . . . 9
 | |
| 17 | 8, 9 | zmulcld 9454 | 
. . . . . . . . . 10
 | 
| 18 | dvdsmultr1 11996 | 
. . . . . . . . . 10
 | |
| 19 | 7, 17, 10, 18 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 20 | 16, 19 | mpd 13 | 
. . . . . . . 8
 | 
| 21 | 8 | zcnd 9449 | 
. . . . . . . . 9
 | 
| 22 | 9 | zcnd 9449 | 
. . . . . . . . 9
 | 
| 23 | 10 | zcnd 9449 | 
. . . . . . . . 9
 | 
| 24 | 21, 22, 23 | mulassd 8050 | 
. . . . . . . 8
 | 
| 25 | 20, 24 | breqtrd 4059 | 
. . . . . . 7
 | 
| 26 | 8, 13 | zmulcld 9454 | 
. . . . . . . . 9
 | 
| 27 | dvdsmul1 11978 | 
. . . . . . . . 9
 | |
| 28 | 7, 26, 27 | syl2anc 411 | 
. . . . . . . 8
 | 
| 29 | 7 | zcnd 9449 | 
. . . . . . . . 9
 | 
| 30 | 13 | zcnd 9449 | 
. . . . . . . . 9
 | 
| 31 | 21, 29, 30 | mul12d 8178 | 
. . . . . . . 8
 | 
| 32 | 28, 31 | breqtrrd 4061 | 
. . . . . . 7
 | 
| 33 | dvds2add 11990 | 
. . . . . . . 8
 | |
| 34 | 33 | imp 124 | 
. . . . . . 7
 | 
| 35 | 7, 12, 15, 25, 32, 34 | syl32anc 1257 | 
. . . . . 6
 | 
| 36 | 11 | zcnd 9449 | 
. . . . . . 7
 | 
| 37 | 14 | zcnd 9449 | 
. . . . . . 7
 | 
| 38 | 21, 36, 37 | adddid 8051 | 
. . . . . 6
 | 
| 39 | 35, 38 | breqtrrd 4061 | 
. . . . 5
 | 
| 40 | oveq2 5930 | 
. . . . . 6
 | |
| 41 | 40 | breq2d 4045 | 
. . . . 5
 | 
| 42 | 39, 41 | syl5ibrcom 157 | 
. . . 4
 | 
| 43 | 42 | rexlimdvva 2622 | 
. . 3
 | 
| 44 | 6, 43 | mpd 13 | 
. 2
 | 
| 45 | dvdszrcl 11957 | 
. . . . 5
 | |
| 46 | 45 | adantl 277 | 
. . . 4
 | 
| 47 | 46 | simpld 112 | 
. . 3
 | 
| 48 | 46 | simprd 114 | 
. . 3
 | 
| 49 | zmulcl 9379 | 
. . . 4
 | |
| 50 | 49 | adantr 276 | 
. . 3
 | 
| 51 | simpr 110 | 
. . 3
 | |
| 52 | simplr 528 | 
. . . . . 6
 | |
| 53 | gcddvds 12130 | 
. . . . . 6
 | |
| 54 | 52, 47, 53 | syl2anc 411 | 
. . . . 5
 | 
| 55 | 54 | simpld 112 | 
. . . 4
 | 
| 56 | 52, 47 | gcdcld 12135 | 
. . . . . 6
 | 
| 57 | 56 | nn0zd 9446 | 
. . . . 5
 | 
| 58 | simpll 527 | 
. . . . 5
 | |
| 59 | dvdscmul 11983 | 
. . . . 5
 | |
| 60 | 57, 52, 58, 59 | syl3anc 1249 | 
. . . 4
 | 
| 61 | 55, 60 | mpd 13 | 
. . 3
 | 
| 62 | dvdstr 11993 | 
. . . 4
 | |
| 63 | 62 | imp 124 | 
. . 3
 | 
| 64 | 47, 48, 50, 51, 61, 63 | syl32anc 1257 | 
. 2
 | 
| 65 | 44, 64 | impbida 596 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 | 
| This theorem is referenced by: coprmdvds 12260 | 
| Copyright terms: Public domain | W3C validator |