ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmulgcd Unicode version

Theorem dvdsmulgcd 11958
Description: Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
dvdsmulgcd  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  <->  A 
||  ( B  x.  ( C  gcd  A ) ) ) )

Proof of Theorem dvdsmulgcd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 520 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  C  e.  ZZ )
2 dvdszrcl 11732 . . . . . 6  |-  ( A 
||  ( B  x.  C )  ->  ( A  e.  ZZ  /\  ( B  x.  C )  e.  ZZ ) )
32adantl 275 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  ( A  e.  ZZ  /\  ( B  x.  C )  e.  ZZ ) )
43simpld 111 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  A  e.  ZZ )
5 bezout 11944 . . . 4  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) ) )
61, 4, 5syl2anc 409 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) ) )
74adantr 274 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  e.  ZZ )
8 simplll 523 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  B  e.  ZZ )
9 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  C  e.  ZZ )
10 simprl 521 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
119, 10zmulcld 9319 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( C  x.  x )  e.  ZZ )
128, 11zmulcld 9319 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( C  x.  x
) )  e.  ZZ )
13 simprr 522 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
147, 13zmulcld 9319 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  x.  y )  e.  ZZ )
158, 14zmulcld 9319 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( A  x.  y
) )  e.  ZZ )
16 simplr 520 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  C )
)
178, 9zmulcld 9319 . . . . . . . . . 10  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  C )  e.  ZZ )
18 dvdsmultr1 11771 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( B  x.  C
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  ->  A  ||  ( ( B  x.  C )  x.  x ) ) )
197, 17, 10, 18syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  ||  ( B  x.  C
)  ->  A  ||  (
( B  x.  C
)  x.  x ) ) )
2016, 19mpd 13 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  (
( B  x.  C
)  x.  x ) )
218zcnd 9314 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  B  e.  CC )
229zcnd 9314 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  C  e.  CC )
2310zcnd 9314 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  CC )
2421, 22, 23mulassd 7922 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( B  x.  C )  x.  x )  =  ( B  x.  ( C  x.  x ) ) )
2520, 24breqtrd 4008 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( C  x.  x ) ) )
268, 13zmulcld 9319 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  y )  e.  ZZ )
27 dvdsmul1 11753 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( B  x.  y
)  e.  ZZ )  ->  A  ||  ( A  x.  ( B  x.  y ) ) )
287, 26, 27syl2anc 409 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( A  x.  ( B  x.  y ) ) )
297zcnd 9314 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  e.  CC )
3013zcnd 9314 . . . . . . . . 9  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  CC )
3121, 29, 30mul12d 8050 . . . . . . . 8  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( A  x.  y
) )  =  ( A  x.  ( B  x.  y ) ) )
3228, 31breqtrrd 4010 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( A  x.  y ) ) )
33 dvds2add 11765 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( B  x.  ( C  x.  x )
)  e.  ZZ  /\  ( B  x.  ( A  x.  y )
)  e.  ZZ )  ->  ( ( A 
||  ( B  x.  ( C  x.  x
) )  /\  A  ||  ( B  x.  ( A  x.  y )
) )  ->  A  ||  ( ( B  x.  ( C  x.  x
) )  +  ( B  x.  ( A  x.  y ) ) ) ) )
3433imp 123 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  ( B  x.  ( C  x.  x )
)  e.  ZZ  /\  ( B  x.  ( A  x.  y )
)  e.  ZZ )  /\  ( A  ||  ( B  x.  ( C  x.  x )
)  /\  A  ||  ( B  x.  ( A  x.  y ) ) ) )  ->  A  ||  (
( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
357, 12, 15, 25, 32, 34syl32anc 1236 . . . . . 6  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  (
( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
3611zcnd 9314 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( C  x.  x )  e.  CC )
3714zcnd 9314 . . . . . . 7  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( A  x.  y )  e.  CC )
3821, 36, 37adddid 7923 . . . . . 6  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y ) ) )  =  ( ( B  x.  ( C  x.  x )
)  +  ( B  x.  ( A  x.  y ) ) ) )
3935, 38breqtrrd 4010 . . . . 5  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  A  ||  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y ) ) ) )
40 oveq2 5850 . . . . . 6  |-  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y
) )  ->  ( B  x.  ( C  gcd  A ) )  =  ( B  x.  (
( C  x.  x
)  +  ( A  x.  y ) ) ) )
4140breq2d 3994 . . . . 5  |-  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y
) )  ->  ( A  ||  ( B  x.  ( C  gcd  A ) )  <->  A  ||  ( B  x.  ( ( C  x.  x )  +  ( A  x.  y
) ) ) ) )
4239, 41syl5ibrcom 156 . . . 4  |-  ( ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C
) )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) ) )
4342rexlimdvva 2591 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( C  gcd  A )  =  ( ( C  x.  x )  +  ( A  x.  y ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) ) )
446, 43mpd 13 . 2  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  C )
)  ->  A  ||  ( B  x.  ( C  gcd  A ) ) )
45 dvdszrcl 11732 . . . . 5  |-  ( A 
||  ( B  x.  ( C  gcd  A ) )  ->  ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ ) )
4645adantl 275 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ ) )
4746simpld 111 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  e.  ZZ )
4846simprd 113 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  ( C  gcd  A ) )  e.  ZZ )
49 zmulcl 9244 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C
)  e.  ZZ )
5049adantr 274 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  C )  e.  ZZ )
51 simpr 109 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  ||  ( B  x.  ( C  gcd  A ) ) )
52 simplr 520 . . . . . 6  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  C  e.  ZZ )
53 gcddvds 11896 . . . . . 6  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( C  gcd  A )  ||  C  /\  ( C  gcd  A ) 
||  A ) )
5452, 47, 53syl2anc 409 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( ( C  gcd  A )  ||  C  /\  ( C  gcd  A )  ||  A ) )
5554simpld 111 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  ||  C )
5652, 47gcdcld 11901 . . . . . 6  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  e.  NN0 )
5756nn0zd 9311 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( C  gcd  A )  e.  ZZ )
58 simpll 519 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  B  e.  ZZ )
59 dvdscmul 11758 . . . . 5  |-  ( ( ( C  gcd  A
)  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( C  gcd  A
)  ||  C  ->  ( B  x.  ( C  gcd  A ) ) 
||  ( B  x.  C ) ) )
6057, 52, 58, 59syl3anc 1228 . . . 4  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( ( C  gcd  A )  ||  C  ->  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C ) ) )
6155, 60mpd 13 . . 3  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C ) )
62 dvdstr 11768 . . . 4  |-  ( ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ  /\  ( B  x.  C )  e.  ZZ )  ->  (
( A  ||  ( B  x.  ( C  gcd  A ) )  /\  ( B  x.  ( C  gcd  A ) ) 
||  ( B  x.  C ) )  ->  A  ||  ( B  x.  C ) ) )
6362imp 123 . . 3  |-  ( ( ( A  e.  ZZ  /\  ( B  x.  ( C  gcd  A ) )  e.  ZZ  /\  ( B  x.  C )  e.  ZZ )  /\  ( A  ||  ( B  x.  ( C  gcd  A ) )  /\  ( B  x.  ( C  gcd  A ) )  ||  ( B  x.  C )
) )  ->  A  ||  ( B  x.  C
) )
6447, 48, 50, 51, 61, 63syl32anc 1236 . 2  |-  ( ( ( B  e.  ZZ  /\  C  e.  ZZ )  /\  A  ||  ( B  x.  ( C  gcd  A ) ) )  ->  A  ||  ( B  x.  C )
)
6544, 64impbida 586 1  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  ( B  x.  C )  <->  A 
||  ( B  x.  ( C  gcd  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445   class class class wbr 3982  (class class class)co 5842    + caddc 7756    x. cmul 7758   ZZcz 9191    || cdvds 11727    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  coprmdvds  12024
  Copyright terms: Public domain W3C validator