ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre Unicode version

Theorem expcnvre 11524
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar  |-  ( ph  ->  A  e.  RR )
expcnvre.a1  |-  ( ph  ->  A  <  1 )
expcnvre.a0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
expcnvre  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnvre
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3  |-  ( ph  ->  A  e.  RR )
2 1red 7985 . . 3  |-  ( ph  ->  1  e.  RR )
3 expcnvre.a1 . . 3  |-  ( ph  ->  A  <  1 )
4 qbtwnre 10270 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  A  <  1 )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  1 ) )
51, 2, 3, 4syl3anc 1248 . 2  |-  ( ph  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  1 ) )
6 nn0uz 9575 . . 3  |-  NN0  =  ( ZZ>= `  0 )
7 0zd 9278 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  e.  ZZ )
8 qre 9638 . . . . . 6  |-  ( x  e.  QQ  ->  x  e.  RR )
98ad2antrl 490 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  e.  RR )
109recnd 7999 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  e.  CC )
11 0red 7971 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  e.  RR )
121adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  A  e.  RR )
13 expcnvre.a0 . . . . . . . . 9  |-  ( ph  ->  0  <_  A )
1413adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <_  A
)
15 simprrl 539 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  A  <  x
)
1611, 12, 9, 14, 15lelttrd 8095 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <  x
)
1711, 9, 16ltled 8089 . . . . . 6  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <_  x
)
189, 17absidd 11189 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( abs `  x
)  =  x )
19 simprrr 540 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  <  1
)
2018, 19eqbrtrd 4037 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( abs `  x
)  <  1 )
219, 16gt0ap0d 8599 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x #  0 )
2210, 20, 21expcnvap0 11523 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( x ^
n ) )  ~~>  0 )
23 nn0ex 9195 . . . . 5  |-  NN0  e.  _V
2423mptex 5755 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
2524a1i 9 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  e. 
_V )
26 simpr 110 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
279adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  x  e.  RR )
2827, 26reexpcld 10684 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
x ^ k )  e.  RR )
29 oveq2 5896 . . . . . 6  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
30 eqid 2187 . . . . . 6  |-  ( n  e.  NN0  |->  ( x ^ n ) )  =  ( n  e. 
NN0  |->  ( x ^
n ) )
3129, 30fvmptg 5605 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x ^ k
)  e.  RR )  ->  ( ( n  e.  NN0  |->  ( x ^ n ) ) `
 k )  =  ( x ^ k
) )
3226, 28, 31syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( x ^ n
) ) `  k
)  =  ( x ^ k ) )
3332, 28eqeltrd 2264 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( x ^ n
) ) `  k
)  e.  RR )
3412adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  e.  RR )
3534, 26reexpcld 10684 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  ( A ^ k )  e.  RR )
36 oveq2 5896 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
37 eqid 2187 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3836, 37fvmptg 5605 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  RR )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3926, 35, 38syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  =  ( A ^
k ) )
4039, 35eqeltrd 2264 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  e.  RR )
4114adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  A )
4215adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  <  x )
4334, 27, 42ltled 8089 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  <_  x )
44 leexp1a 10588 . . . . 5  |-  ( ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  x ) )  ->  ( A ^ k )  <_ 
( x ^ k
) )
4534, 27, 26, 41, 43, 44syl32anc 1256 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  ( A ^ k )  <_ 
( x ^ k
) )
4645, 39, 323brtr4d 4047 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( x ^ n ) ) `
 k ) )
4734, 26, 41expge0d 10685 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  ( A ^ k
) )
4847, 39breqtrrd 4043 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11357 . 2  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0 )
505, 49rexlimddv 2609 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   E.wrex 2466   _Vcvv 2749   class class class wbr 4015    |-> cmpt 4076   ` cfv 5228  (class class class)co 5888   RRcr 7823   0cc0 7824   1c1 7825    < clt 8005    <_ cle 8006   NN0cn0 9189   QQcq 9632   ^cexp 10532   abscabs 11019    ~~> cli 11299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300
This theorem is referenced by:  expcnv  11525
  Copyright terms: Public domain W3C validator