ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre Unicode version

Theorem expcnvre 11444
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar  |-  ( ph  ->  A  e.  RR )
expcnvre.a1  |-  ( ph  ->  A  <  1 )
expcnvre.a0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
expcnvre  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnvre
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3  |-  ( ph  ->  A  e.  RR )
2 1red 7914 . . 3  |-  ( ph  ->  1  e.  RR )
3 expcnvre.a1 . . 3  |-  ( ph  ->  A  <  1 )
4 qbtwnre 10192 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  A  <  1 )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  1 ) )
51, 2, 3, 4syl3anc 1228 . 2  |-  ( ph  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  1 ) )
6 nn0uz 9500 . . 3  |-  NN0  =  ( ZZ>= `  0 )
7 0zd 9203 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  e.  ZZ )
8 qre 9563 . . . . . 6  |-  ( x  e.  QQ  ->  x  e.  RR )
98ad2antrl 482 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  e.  RR )
109recnd 7927 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  e.  CC )
11 0red 7900 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  e.  RR )
121adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  A  e.  RR )
13 expcnvre.a0 . . . . . . . . 9  |-  ( ph  ->  0  <_  A )
1413adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <_  A
)
15 simprrl 529 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  A  <  x
)
1611, 12, 9, 14, 15lelttrd 8023 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <  x
)
1711, 9, 16ltled 8017 . . . . . 6  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <_  x
)
189, 17absidd 11109 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( abs `  x
)  =  x )
19 simprrr 530 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  <  1
)
2018, 19eqbrtrd 4004 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( abs `  x
)  <  1 )
219, 16gt0ap0d 8527 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x #  0 )
2210, 20, 21expcnvap0 11443 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( x ^
n ) )  ~~>  0 )
23 nn0ex 9120 . . . . 5  |-  NN0  e.  _V
2423mptex 5711 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
2524a1i 9 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  e. 
_V )
26 simpr 109 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
279adantr 274 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  x  e.  RR )
2827, 26reexpcld 10605 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
x ^ k )  e.  RR )
29 oveq2 5850 . . . . . 6  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
30 eqid 2165 . . . . . 6  |-  ( n  e.  NN0  |->  ( x ^ n ) )  =  ( n  e. 
NN0  |->  ( x ^
n ) )
3129, 30fvmptg 5562 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x ^ k
)  e.  RR )  ->  ( ( n  e.  NN0  |->  ( x ^ n ) ) `
 k )  =  ( x ^ k
) )
3226, 28, 31syl2anc 409 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( x ^ n
) ) `  k
)  =  ( x ^ k ) )
3332, 28eqeltrd 2243 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( x ^ n
) ) `  k
)  e.  RR )
3412adantr 274 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  e.  RR )
3534, 26reexpcld 10605 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  ( A ^ k )  e.  RR )
36 oveq2 5850 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
37 eqid 2165 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3836, 37fvmptg 5562 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  RR )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3926, 35, 38syl2anc 409 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  =  ( A ^
k ) )
4039, 35eqeltrd 2243 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  e.  RR )
4114adantr 274 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  A )
4215adantr 274 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  <  x )
4334, 27, 42ltled 8017 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  <_  x )
44 leexp1a 10510 . . . . 5  |-  ( ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  x ) )  ->  ( A ^ k )  <_ 
( x ^ k
) )
4534, 27, 26, 41, 43, 44syl32anc 1236 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  ( A ^ k )  <_ 
( x ^ k
) )
4645, 39, 323brtr4d 4014 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( x ^ n ) ) `
 k ) )
4734, 26, 41expge0d 10606 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  ( A ^ k
) )
4847, 39breqtrrd 4010 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11277 . 2  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0 )
505, 49rexlimddv 2588 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   E.wrex 2445   _Vcvv 2726   class class class wbr 3982    |-> cmpt 4043   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    < clt 7933    <_ cle 7934   NN0cn0 9114   QQcq 9557   ^cexp 10454   abscabs 10939    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  expcnv  11445
  Copyright terms: Public domain W3C validator