ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre Unicode version

Theorem expcnvre 12009
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar  |-  ( ph  ->  A  e.  RR )
expcnvre.a1  |-  ( ph  ->  A  <  1 )
expcnvre.a0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
expcnvre  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnvre
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3  |-  ( ph  ->  A  e.  RR )
2 1red 8157 . . 3  |-  ( ph  ->  1  e.  RR )
3 expcnvre.a1 . . 3  |-  ( ph  ->  A  <  1 )
4 qbtwnre 10471 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  A  <  1 )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  1 ) )
51, 2, 3, 4syl3anc 1271 . 2  |-  ( ph  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  1 ) )
6 nn0uz 9753 . . 3  |-  NN0  =  ( ZZ>= `  0 )
7 0zd 9454 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  e.  ZZ )
8 qre 9816 . . . . . 6  |-  ( x  e.  QQ  ->  x  e.  RR )
98ad2antrl 490 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  e.  RR )
109recnd 8171 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  e.  CC )
11 0red 8143 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  e.  RR )
121adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  A  e.  RR )
13 expcnvre.a0 . . . . . . . . 9  |-  ( ph  ->  0  <_  A )
1413adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <_  A
)
15 simprrl 539 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  A  <  x
)
1611, 12, 9, 14, 15lelttrd 8267 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <  x
)
1711, 9, 16ltled 8261 . . . . . 6  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <_  x
)
189, 17absidd 11673 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( abs `  x
)  =  x )
19 simprrr 540 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  <  1
)
2018, 19eqbrtrd 4104 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( abs `  x
)  <  1 )
219, 16gt0ap0d 8772 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x #  0 )
2210, 20, 21expcnvap0 12008 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( x ^
n ) )  ~~>  0 )
23 nn0ex 9371 . . . . 5  |-  NN0  e.  _V
2423mptex 5864 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
2524a1i 9 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  e. 
_V )
26 simpr 110 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
279adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  x  e.  RR )
2827, 26reexpcld 10907 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
x ^ k )  e.  RR )
29 oveq2 6008 . . . . . 6  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
30 eqid 2229 . . . . . 6  |-  ( n  e.  NN0  |->  ( x ^ n ) )  =  ( n  e. 
NN0  |->  ( x ^
n ) )
3129, 30fvmptg 5709 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x ^ k
)  e.  RR )  ->  ( ( n  e.  NN0  |->  ( x ^ n ) ) `
 k )  =  ( x ^ k
) )
3226, 28, 31syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( x ^ n
) ) `  k
)  =  ( x ^ k ) )
3332, 28eqeltrd 2306 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( x ^ n
) ) `  k
)  e.  RR )
3412adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  e.  RR )
3534, 26reexpcld 10907 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  ( A ^ k )  e.  RR )
36 oveq2 6008 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
37 eqid 2229 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3836, 37fvmptg 5709 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  RR )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3926, 35, 38syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  =  ( A ^
k ) )
4039, 35eqeltrd 2306 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  e.  RR )
4114adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  A )
4215adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  <  x )
4334, 27, 42ltled 8261 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  <_  x )
44 leexp1a 10811 . . . . 5  |-  ( ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  x ) )  ->  ( A ^ k )  <_ 
( x ^ k
) )
4534, 27, 26, 41, 43, 44syl32anc 1279 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  ( A ^ k )  <_ 
( x ^ k
) )
4645, 39, 323brtr4d 4114 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( x ^ n ) ) `
 k ) )
4734, 26, 41expge0d 10908 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  ( A ^ k
) )
4847, 39breqtrrd 4110 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11842 . 2  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0 )
505, 49rexlimddv 2653 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799   class class class wbr 4082    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000   RRcr 7994   0cc0 7995   1c1 7996    < clt 8177    <_ cle 8178   NN0cn0 9365   QQcq 9810   ^cexp 10755   abscabs 11503    ~~> cli 11784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785
This theorem is referenced by:  expcnv  12010
  Copyright terms: Public domain W3C validator