ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvre Unicode version

Theorem expcnvre 11649
Description: A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnvre.ar  |-  ( ph  ->  A  e.  RR )
expcnvre.a1  |-  ( ph  ->  A  <  1 )
expcnvre.a0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
expcnvre  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnvre
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expcnvre.ar . . 3  |-  ( ph  ->  A  e.  RR )
2 1red 8036 . . 3  |-  ( ph  ->  1  e.  RR )
3 expcnvre.a1 . . 3  |-  ( ph  ->  A  <  1 )
4 qbtwnre 10328 . . 3  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  A  <  1 )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  1 ) )
51, 2, 3, 4syl3anc 1249 . 2  |-  ( ph  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  1 ) )
6 nn0uz 9630 . . 3  |-  NN0  =  ( ZZ>= `  0 )
7 0zd 9332 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  e.  ZZ )
8 qre 9693 . . . . . 6  |-  ( x  e.  QQ  ->  x  e.  RR )
98ad2antrl 490 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  e.  RR )
109recnd 8050 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  e.  CC )
11 0red 8022 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  e.  RR )
121adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  A  e.  RR )
13 expcnvre.a0 . . . . . . . . 9  |-  ( ph  ->  0  <_  A )
1413adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <_  A
)
15 simprrl 539 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  A  <  x
)
1611, 12, 9, 14, 15lelttrd 8146 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <  x
)
1711, 9, 16ltled 8140 . . . . . 6  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  0  <_  x
)
189, 17absidd 11314 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( abs `  x
)  =  x )
19 simprrr 540 . . . . 5  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x  <  1
)
2018, 19eqbrtrd 4052 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( abs `  x
)  <  1 )
219, 16gt0ap0d 8650 . . . 4  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  x #  0 )
2210, 20, 21expcnvap0 11648 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( x ^
n ) )  ~~>  0 )
23 nn0ex 9249 . . . . 5  |-  NN0  e.  _V
2423mptex 5785 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
2524a1i 9 . . 3  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  e. 
_V )
26 simpr 110 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
279adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  x  e.  RR )
2827, 26reexpcld 10764 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
x ^ k )  e.  RR )
29 oveq2 5927 . . . . . 6  |-  ( n  =  k  ->  (
x ^ n )  =  ( x ^
k ) )
30 eqid 2193 . . . . . 6  |-  ( n  e.  NN0  |->  ( x ^ n ) )  =  ( n  e. 
NN0  |->  ( x ^
n ) )
3129, 30fvmptg 5634 . . . . 5  |-  ( ( k  e.  NN0  /\  ( x ^ k
)  e.  RR )  ->  ( ( n  e.  NN0  |->  ( x ^ n ) ) `
 k )  =  ( x ^ k
) )
3226, 28, 31syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( x ^ n
) ) `  k
)  =  ( x ^ k ) )
3332, 28eqeltrd 2270 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( x ^ n
) ) `  k
)  e.  RR )
3412adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  e.  RR )
3534, 26reexpcld 10764 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  ( A ^ k )  e.  RR )
36 oveq2 5927 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
37 eqid 2193 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3836, 37fvmptg 5634 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  RR )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3926, 35, 38syl2anc 411 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  =  ( A ^
k ) )
4039, 35eqeltrd 2270 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  e.  RR )
4114adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  A )
4215adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  <  x )
4334, 27, 42ltled 8140 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  A  <_  x )
44 leexp1a 10668 . . . . 5  |-  ( ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  x ) )  ->  ( A ^ k )  <_ 
( x ^ k
) )
4534, 27, 26, 41, 43, 44syl32anc 1257 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  ( A ^ k )  <_ 
( x ^ k
) )
4645, 39, 323brtr4d 4062 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( x ^ n ) ) `
 k ) )
4734, 26, 41expge0d 10765 . . . 4  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  ( A ^ k
) )
4847, 39breqtrrd 4058 . . 3  |-  ( ( ( ph  /\  (
x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  /\  k  e. 
NN0 )  ->  0  <_  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )
496, 7, 22, 25, 33, 40, 46, 48climsqz2 11482 . 2  |-  ( (
ph  /\  ( x  e.  QQ  /\  ( A  <  x  /\  x  <  1 ) ) )  ->  ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0 )
505, 49rexlimddv 2616 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473   _Vcvv 2760   class class class wbr 4030    |-> cmpt 4091   ` cfv 5255  (class class class)co 5919   RRcr 7873   0cc0 7874   1c1 7875    < clt 8056    <_ cle 8057   NN0cn0 9243   QQcq 9687   ^cexp 10612   abscabs 11144    ~~> cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425
This theorem is referenced by:  expcnv  11650
  Copyright terms: Public domain W3C validator