ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1o Unicode version

Theorem seq3f1o 10609
Description: Rearrange a sum via an arbitrary bijection on  ( M ... N
). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
Hypotheses
Ref Expression
iseqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqf1o.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
iseqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
iseqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1o.7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1o.h  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  x )  e.  S
)
iseqf1o.8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( G `  ( F `
 k ) ) )
Assertion
Ref Expression
seq3f1o  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Distinct variable groups:    x, M, y, z    k, M    x, N, y, z    k, N   
x, G, y, z   
k, G    x, F, y, z    k, F    x, H, y, k    x, S, y, z    S, k   
x,  .+ , y, z    .+ , k    ph, x, y, z    ph, k, x, y
Allowed substitution hint:    H( z)

Proof of Theorem seq3f1o
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 elfzle2 10103 . . . . . 6  |-  ( k  e.  ( M ... N )  ->  k  <_  N )
32iftrued 3568 . . . . 5  |-  ( k  e.  ( M ... N )  ->  if ( k  <_  N ,  ( G `  ( F `  k ) ) ,  ( G `
 M ) )  =  ( G `  ( F `  k ) ) )
43adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) )  =  ( G `  ( F `  k ) ) )
5 elfzuz 10096 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
6 fveq2 5558 . . . . . . . 8  |-  ( x  =  ( F `  k )  ->  ( G `  x )  =  ( G `  ( F `  k ) ) )
76eleq1d 2265 . . . . . . 7  |-  ( x  =  ( F `  k )  ->  (
( G `  x
)  e.  S  <->  ( G `  ( F `  k
) )  e.  S
) )
8 iseqf1o.7 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
98ralrimiva 2570 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
109adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A. x  e.  ( ZZ>= `  M )
( G `  x
)  e.  S )
11 iseqf1o.6 . . . . . . . . . 10  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
12 f1of 5504 . . . . . . . . . 10  |-  ( F : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  F :
( M ... N
) --> ( M ... N ) )
1311, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  F : ( M ... N ) --> ( M ... N ) )
1413ffvelcdmda 5697 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  ( M ... N ) )
15 elfzuz 10096 . . . . . . . 8  |-  ( ( F `  k )  e.  ( M ... N )  ->  ( F `  k )  e.  ( ZZ>= `  M )
)
1614, 15syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  (
ZZ>= `  M ) )
177, 10, 16rspcdva 2873 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  ( F `  k
) )  e.  S
)
184, 17eqeltrd 2273 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) )  e.  S )
19 breq1 4036 . . . . . . 7  |-  ( a  =  k  ->  (
a  <_  N  <->  k  <_  N ) )
20 2fveq3 5563 . . . . . . 7  |-  ( a  =  k  ->  ( G `  ( F `  a ) )  =  ( G `  ( F `  k )
) )
2119, 20ifbieq1d 3583 . . . . . 6  |-  ( a  =  k  ->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) )  =  if ( k  <_  N ,  ( G `  ( F `
 k ) ) ,  ( G `  M ) ) )
22 eqid 2196 . . . . . 6  |-  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) )  =  ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) )
2321, 22fvmptg 5637 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  if ( k  <_  N ,  ( G `  ( F `  k ) ) ,  ( G `
 M ) )  e.  S )  -> 
( ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) ) `  k
)  =  if ( k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) ) )
245, 18, 23syl2an2 594 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  k )  =  if ( k  <_  N ,  ( G `  ( F `
 k ) ) ,  ( G `  M ) ) )
25 iseqf1o.8 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( G `  ( F `
 k ) ) )
264, 24, 253eqtr4rd 2240 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( a  e.  (
ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) ) ) `  k ) )
27 iseqf1o.h . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  x )  e.  S
)
28 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
29 fveq2 5558 . . . . . . . 8  |-  ( b  =  ( F `  x )  ->  ( G `  b )  =  ( G `  ( F `  x ) ) )
3029eleq1d 2265 . . . . . . 7  |-  ( b  =  ( F `  x )  ->  (
( G `  b
)  e.  S  <->  ( G `  ( F `  x
) )  e.  S
) )
31 fveq2 5558 . . . . . . . . . . 11  |-  ( x  =  b  ->  ( G `  x )  =  ( G `  b ) )
3231eleq1d 2265 . . . . . . . . . 10  |-  ( x  =  b  ->  (
( G `  x
)  e.  S  <->  ( G `  b )  e.  S
) )
3332cbvralv 2729 . . . . . . . . 9  |-  ( A. x  e.  ( ZZ>= `  M ) ( G `
 x )  e.  S  <->  A. b  e.  (
ZZ>= `  M ) ( G `  b )  e.  S )
349, 33sylib 122 . . . . . . . 8  |-  ( ph  ->  A. b  e.  (
ZZ>= `  M ) ( G `  b )  e.  S )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  A. b  e.  ( ZZ>= `  M )
( G `  b
)  e.  S )
3613ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  F :
( M ... N
) --> ( M ... N ) )
37 eluzel2 9606 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
381, 37syl 14 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
3938ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  M  e.  ZZ )
40 eluzelz 9610 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
411, 40syl 14 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
4241ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  N  e.  ZZ )
43 eluzelz 9610 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
4443ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ZZ )
45 eluzle 9613 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
4645ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  M  <_  x )
47 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  <_  N )
48 elfz4 10093 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  N ) )  ->  x  e.  ( M ... N ) )
4939, 42, 44, 46, 47, 48syl32anc 1257 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( M ... N ) )
5036, 49ffvelcdmd 5698 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( F `  x )  e.  ( M ... N ) )
51 elfzuz 10096 . . . . . . . 8  |-  ( ( F `  x )  e.  ( M ... N )  ->  ( F `  x )  e.  ( ZZ>= `  M )
)
5250, 51syl 14 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( F `  x )  e.  (
ZZ>= `  M ) )
5330, 35, 52rspcdva 2873 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( G `  ( F `  x
) )  e.  S
)
54 fveq2 5558 . . . . . . . . 9  |-  ( x  =  M  ->  ( G `  x )  =  ( G `  M ) )
5554eleq1d 2265 . . . . . . . 8  |-  ( x  =  M  ->  (
( G `  x
)  e.  S  <->  ( G `  M )  e.  S
) )
56 uzid 9615 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
5738, 56syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
5855, 9, 57rspcdva 2873 . . . . . . 7  |-  ( ph  ->  ( G `  M
)  e.  S )
5958ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  ( G `  M )  e.  S )
6041adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
61 zdcle 9402 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  <_  N )
6243, 60, 61syl2an2 594 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  <_  N )
6353, 59, 62ifcldadc 3590 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) )  e.  S )
64 breq1 4036 . . . . . . 7  |-  ( a  =  x  ->  (
a  <_  N  <->  x  <_  N ) )
65 2fveq3 5563 . . . . . . 7  |-  ( a  =  x  ->  ( G `  ( F `  a ) )  =  ( G `  ( F `  x )
) )
6664, 65ifbieq1d 3583 . . . . . 6  |-  ( a  =  x  ->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( F `
 x ) ) ,  ( G `  M ) ) )
6766, 22fvmptg 5637 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M )  /\  if ( x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) )  e.  S )  -> 
( ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) ) `  x
)  =  if ( x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) ) )
6828, 63, 67syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  x )  =  if ( x  <_  N ,  ( G `  ( F `
 x ) ) ,  ( G `  M ) ) )
6968, 63eqeltrd 2273 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  x )  e.  S )
70 iseqf1o.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
711, 26, 27, 69, 70seq3fveq 10571 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) ) ) `  N ) )
72 iseqf1o.2 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
73 iseqf1o.3 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7466cbvmptv 4129 . . 3  |-  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x
) ) ,  ( G `  M ) ) )
7570, 72, 73, 1, 11, 8, 74seq3f1oleml 10608 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) ) ) `  N )  =  (  seq M
(  .+  ,  G
) `  N )
)
7671, 75eqtrd 2229 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ifcif 3561   class class class wbr 4033    |-> cmpt 4094   -->wf 5254   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922    <_ cle 8062   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by:  summodclem3  11545  prodmodclem3  11740
  Copyright terms: Public domain W3C validator