| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3f1o | Unicode version | ||
| Description: Rearrange a sum via an
arbitrary bijection on |
| Ref | Expression |
|---|---|
| iseqf1o.1 |
|
| iseqf1o.2 |
|
| iseqf1o.3 |
|
| iseqf1o.4 |
|
| iseqf1o.6 |
|
| iseqf1o.7 |
|
| iseqf1o.h |
|
| iseqf1o.8 |
|
| Ref | Expression |
|---|---|
| seq3f1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1o.4 |
. . 3
| |
| 2 | elfzle2 10150 |
. . . . . 6
| |
| 3 | 2 | iftrued 3578 |
. . . . 5
|
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | elfzuz 10143 |
. . . . 5
| |
| 6 | fveq2 5576 |
. . . . . . . 8
| |
| 7 | 6 | eleq1d 2274 |
. . . . . . 7
|
| 8 | iseqf1o.7 |
. . . . . . . . 9
| |
| 9 | 8 | ralrimiva 2579 |
. . . . . . . 8
|
| 10 | 9 | adantr 276 |
. . . . . . 7
|
| 11 | iseqf1o.6 |
. . . . . . . . . 10
| |
| 12 | f1of 5522 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 13 | ffvelcdmda 5715 |
. . . . . . . 8
|
| 15 | elfzuz 10143 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
|
| 17 | 7, 10, 16 | rspcdva 2882 |
. . . . . 6
|
| 18 | 4, 17 | eqeltrd 2282 |
. . . . 5
|
| 19 | breq1 4047 |
. . . . . . 7
| |
| 20 | 2fveq3 5581 |
. . . . . . 7
| |
| 21 | 19, 20 | ifbieq1d 3593 |
. . . . . 6
|
| 22 | eqid 2205 |
. . . . . 6
| |
| 23 | 21, 22 | fvmptg 5655 |
. . . . 5
|
| 24 | 5, 18, 23 | syl2an2 594 |
. . . 4
|
| 25 | iseqf1o.8 |
. . . 4
| |
| 26 | 4, 24, 25 | 3eqtr4rd 2249 |
. . 3
|
| 27 | iseqf1o.h |
. . 3
| |
| 28 | simpr 110 |
. . . . 5
| |
| 29 | fveq2 5576 |
. . . . . . . 8
| |
| 30 | 29 | eleq1d 2274 |
. . . . . . 7
|
| 31 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 32 | 31 | eleq1d 2274 |
. . . . . . . . . 10
|
| 33 | 32 | cbvralv 2738 |
. . . . . . . . 9
|
| 34 | 9, 33 | sylib 122 |
. . . . . . . 8
|
| 35 | 34 | ad2antrr 488 |
. . . . . . 7
|
| 36 | 13 | ad2antrr 488 |
. . . . . . . . 9
|
| 37 | eluzel2 9653 |
. . . . . . . . . . . 12
| |
| 38 | 1, 37 | syl 14 |
. . . . . . . . . . 11
|
| 39 | 38 | ad2antrr 488 |
. . . . . . . . . 10
|
| 40 | eluzelz 9657 |
. . . . . . . . . . . 12
| |
| 41 | 1, 40 | syl 14 |
. . . . . . . . . . 11
|
| 42 | 41 | ad2antrr 488 |
. . . . . . . . . 10
|
| 43 | eluzelz 9657 |
. . . . . . . . . . 11
| |
| 44 | 43 | ad2antlr 489 |
. . . . . . . . . 10
|
| 45 | eluzle 9660 |
. . . . . . . . . . 11
| |
| 46 | 45 | ad2antlr 489 |
. . . . . . . . . 10
|
| 47 | simpr 110 |
. . . . . . . . . 10
| |
| 48 | elfz4 10140 |
. . . . . . . . . 10
| |
| 49 | 39, 42, 44, 46, 47, 48 | syl32anc 1258 |
. . . . . . . . 9
|
| 50 | 36, 49 | ffvelcdmd 5716 |
. . . . . . . 8
|
| 51 | elfzuz 10143 |
. . . . . . . 8
| |
| 52 | 50, 51 | syl 14 |
. . . . . . 7
|
| 53 | 30, 35, 52 | rspcdva 2882 |
. . . . . 6
|
| 54 | fveq2 5576 |
. . . . . . . . 9
| |
| 55 | 54 | eleq1d 2274 |
. . . . . . . 8
|
| 56 | uzid 9662 |
. . . . . . . . 9
| |
| 57 | 38, 56 | syl 14 |
. . . . . . . 8
|
| 58 | 55, 9, 57 | rspcdva 2882 |
. . . . . . 7
|
| 59 | 58 | ad2antrr 488 |
. . . . . 6
|
| 60 | 41 | adantr 276 |
. . . . . . 7
|
| 61 | zdcle 9449 |
. . . . . . 7
| |
| 62 | 43, 60, 61 | syl2an2 594 |
. . . . . 6
|
| 63 | 53, 59, 62 | ifcldadc 3600 |
. . . . 5
|
| 64 | breq1 4047 |
. . . . . . 7
| |
| 65 | 2fveq3 5581 |
. . . . . . 7
| |
| 66 | 64, 65 | ifbieq1d 3593 |
. . . . . 6
|
| 67 | 66, 22 | fvmptg 5655 |
. . . . 5
|
| 68 | 28, 63, 67 | syl2anc 411 |
. . . 4
|
| 69 | 68, 63 | eqeltrd 2282 |
. . 3
|
| 70 | iseqf1o.1 |
. . 3
| |
| 71 | 1, 26, 27, 69, 70 | seq3fveq 10624 |
. 2
|
| 72 | iseqf1o.2 |
. . 3
| |
| 73 | iseqf1o.3 |
. . 3
| |
| 74 | 66 | cbvmptv 4140 |
. . 3
|
| 75 | 70, 72, 73, 1, 11, 8, 74 | seq3f1oleml 10661 |
. 2
|
| 76 | 71, 75 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-1o 6502 df-er 6620 df-en 6828 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-fzo 10265 df-seqfrec 10593 |
| This theorem is referenced by: summodclem3 11691 prodmodclem3 11886 |
| Copyright terms: Public domain | W3C validator |