ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1o Unicode version

Theorem seq3f1o 10660
Description: Rearrange a sum via an arbitrary bijection on  ( M ... N
). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
Hypotheses
Ref Expression
iseqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqf1o.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
iseqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
iseqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1o.7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1o.h  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  x )  e.  S
)
iseqf1o.8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( G `  ( F `
 k ) ) )
Assertion
Ref Expression
seq3f1o  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Distinct variable groups:    x, M, y, z    k, M    x, N, y, z    k, N   
x, G, y, z   
k, G    x, F, y, z    k, F    x, H, y, k    x, S, y, z    S, k   
x,  .+ , y, z    .+ , k    ph, x, y, z    ph, k, x, y
Allowed substitution hint:    H( z)

Proof of Theorem seq3f1o
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 elfzle2 10149 . . . . . 6  |-  ( k  e.  ( M ... N )  ->  k  <_  N )
32iftrued 3577 . . . . 5  |-  ( k  e.  ( M ... N )  ->  if ( k  <_  N ,  ( G `  ( F `  k ) ) ,  ( G `
 M ) )  =  ( G `  ( F `  k ) ) )
43adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) )  =  ( G `  ( F `  k ) ) )
5 elfzuz 10142 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
6 fveq2 5575 . . . . . . . 8  |-  ( x  =  ( F `  k )  ->  ( G `  x )  =  ( G `  ( F `  k ) ) )
76eleq1d 2273 . . . . . . 7  |-  ( x  =  ( F `  k )  ->  (
( G `  x
)  e.  S  <->  ( G `  ( F `  k
) )  e.  S
) )
8 iseqf1o.7 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
98ralrimiva 2578 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
109adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A. x  e.  ( ZZ>= `  M )
( G `  x
)  e.  S )
11 iseqf1o.6 . . . . . . . . . 10  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
12 f1of 5521 . . . . . . . . . 10  |-  ( F : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  F :
( M ... N
) --> ( M ... N ) )
1311, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  F : ( M ... N ) --> ( M ... N ) )
1413ffvelcdmda 5714 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  ( M ... N ) )
15 elfzuz 10142 . . . . . . . 8  |-  ( ( F `  k )  e.  ( M ... N )  ->  ( F `  k )  e.  ( ZZ>= `  M )
)
1614, 15syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  (
ZZ>= `  M ) )
177, 10, 16rspcdva 2881 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  ( F `  k
) )  e.  S
)
184, 17eqeltrd 2281 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) )  e.  S )
19 breq1 4046 . . . . . . 7  |-  ( a  =  k  ->  (
a  <_  N  <->  k  <_  N ) )
20 2fveq3 5580 . . . . . . 7  |-  ( a  =  k  ->  ( G `  ( F `  a ) )  =  ( G `  ( F `  k )
) )
2119, 20ifbieq1d 3592 . . . . . 6  |-  ( a  =  k  ->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) )  =  if ( k  <_  N ,  ( G `  ( F `
 k ) ) ,  ( G `  M ) ) )
22 eqid 2204 . . . . . 6  |-  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) )  =  ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) )
2321, 22fvmptg 5654 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  if ( k  <_  N ,  ( G `  ( F `  k ) ) ,  ( G `
 M ) )  e.  S )  -> 
( ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) ) `  k
)  =  if ( k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) ) )
245, 18, 23syl2an2 594 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  k )  =  if ( k  <_  N ,  ( G `  ( F `
 k ) ) ,  ( G `  M ) ) )
25 iseqf1o.8 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( G `  ( F `
 k ) ) )
264, 24, 253eqtr4rd 2248 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( a  e.  (
ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) ) ) `  k ) )
27 iseqf1o.h . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  x )  e.  S
)
28 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
29 fveq2 5575 . . . . . . . 8  |-  ( b  =  ( F `  x )  ->  ( G `  b )  =  ( G `  ( F `  x ) ) )
3029eleq1d 2273 . . . . . . 7  |-  ( b  =  ( F `  x )  ->  (
( G `  b
)  e.  S  <->  ( G `  ( F `  x
) )  e.  S
) )
31 fveq2 5575 . . . . . . . . . . 11  |-  ( x  =  b  ->  ( G `  x )  =  ( G `  b ) )
3231eleq1d 2273 . . . . . . . . . 10  |-  ( x  =  b  ->  (
( G `  x
)  e.  S  <->  ( G `  b )  e.  S
) )
3332cbvralv 2737 . . . . . . . . 9  |-  ( A. x  e.  ( ZZ>= `  M ) ( G `
 x )  e.  S  <->  A. b  e.  (
ZZ>= `  M ) ( G `  b )  e.  S )
349, 33sylib 122 . . . . . . . 8  |-  ( ph  ->  A. b  e.  (
ZZ>= `  M ) ( G `  b )  e.  S )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  A. b  e.  ( ZZ>= `  M )
( G `  b
)  e.  S )
3613ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  F :
( M ... N
) --> ( M ... N ) )
37 eluzel2 9652 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
381, 37syl 14 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
3938ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  M  e.  ZZ )
40 eluzelz 9656 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
411, 40syl 14 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
4241ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  N  e.  ZZ )
43 eluzelz 9656 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
4443ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ZZ )
45 eluzle 9659 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
4645ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  M  <_  x )
47 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  <_  N )
48 elfz4 10139 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  N ) )  ->  x  e.  ( M ... N ) )
4939, 42, 44, 46, 47, 48syl32anc 1257 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( M ... N ) )
5036, 49ffvelcdmd 5715 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( F `  x )  e.  ( M ... N ) )
51 elfzuz 10142 . . . . . . . 8  |-  ( ( F `  x )  e.  ( M ... N )  ->  ( F `  x )  e.  ( ZZ>= `  M )
)
5250, 51syl 14 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( F `  x )  e.  (
ZZ>= `  M ) )
5330, 35, 52rspcdva 2881 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( G `  ( F `  x
) )  e.  S
)
54 fveq2 5575 . . . . . . . . 9  |-  ( x  =  M  ->  ( G `  x )  =  ( G `  M ) )
5554eleq1d 2273 . . . . . . . 8  |-  ( x  =  M  ->  (
( G `  x
)  e.  S  <->  ( G `  M )  e.  S
) )
56 uzid 9661 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
5738, 56syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
5855, 9, 57rspcdva 2881 . . . . . . 7  |-  ( ph  ->  ( G `  M
)  e.  S )
5958ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  ( G `  M )  e.  S )
6041adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
61 zdcle 9448 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  <_  N )
6243, 60, 61syl2an2 594 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  <_  N )
6353, 59, 62ifcldadc 3599 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) )  e.  S )
64 breq1 4046 . . . . . . 7  |-  ( a  =  x  ->  (
a  <_  N  <->  x  <_  N ) )
65 2fveq3 5580 . . . . . . 7  |-  ( a  =  x  ->  ( G `  ( F `  a ) )  =  ( G `  ( F `  x )
) )
6664, 65ifbieq1d 3592 . . . . . 6  |-  ( a  =  x  ->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( F `
 x ) ) ,  ( G `  M ) ) )
6766, 22fvmptg 5654 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M )  /\  if ( x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) )  e.  S )  -> 
( ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) ) `  x
)  =  if ( x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) ) )
6828, 63, 67syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  x )  =  if ( x  <_  N ,  ( G `  ( F `
 x ) ) ,  ( G `  M ) ) )
6968, 63eqeltrd 2281 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  x )  e.  S )
70 iseqf1o.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
711, 26, 27, 69, 70seq3fveq 10622 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) ) ) `  N ) )
72 iseqf1o.2 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
73 iseqf1o.3 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7466cbvmptv 4139 . . 3  |-  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x
) ) ,  ( G `  M ) ) )
7570, 72, 73, 1, 11, 8, 74seq3f1oleml 10659 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) ) ) `  N )  =  (  seq M
(  .+  ,  G
) `  N )
)
7671, 75eqtrd 2237 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   ifcif 3570   class class class wbr 4043    |-> cmpt 4104   -->wf 5266   -1-1-onto->wf1o 5269   ` cfv 5270  (class class class)co 5943    <_ cle 8107   ZZcz 9371   ZZ>=cuz 9647   ...cfz 10129    seqcseq 10590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-er 6619  df-en 6827  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264  df-seqfrec 10591
This theorem is referenced by:  summodclem3  11662  prodmodclem3  11857
  Copyright terms: Public domain W3C validator