ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1o Unicode version

Theorem seq3f1o 10537
Description: Rearrange a sum via an arbitrary bijection on  ( M ... N
). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
Hypotheses
Ref Expression
iseqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqf1o.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
iseqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
iseqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1o.7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1o.h  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  x )  e.  S
)
iseqf1o.8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( G `  ( F `
 k ) ) )
Assertion
Ref Expression
seq3f1o  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Distinct variable groups:    x, M, y, z    k, M    x, N, y, z    k, N   
x, G, y, z   
k, G    x, F, y, z    k, F    x, H, y, k    x, S, y, z    S, k   
x,  .+ , y, z    .+ , k    ph, x, y, z    ph, k, x, y
Allowed substitution hint:    H( z)

Proof of Theorem seq3f1o
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 elfzle2 10060 . . . . . 6  |-  ( k  e.  ( M ... N )  ->  k  <_  N )
32iftrued 3556 . . . . 5  |-  ( k  e.  ( M ... N )  ->  if ( k  <_  N ,  ( G `  ( F `  k ) ) ,  ( G `
 M ) )  =  ( G `  ( F `  k ) ) )
43adantl 277 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) )  =  ( G `  ( F `  k ) ) )
5 elfzuz 10053 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
6 fveq2 5534 . . . . . . . 8  |-  ( x  =  ( F `  k )  ->  ( G `  x )  =  ( G `  ( F `  k ) ) )
76eleq1d 2258 . . . . . . 7  |-  ( x  =  ( F `  k )  ->  (
( G `  x
)  e.  S  <->  ( G `  ( F `  k
) )  e.  S
) )
8 iseqf1o.7 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
98ralrimiva 2563 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
109adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A. x  e.  ( ZZ>= `  M )
( G `  x
)  e.  S )
11 iseqf1o.6 . . . . . . . . . 10  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
12 f1of 5480 . . . . . . . . . 10  |-  ( F : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  F :
( M ... N
) --> ( M ... N ) )
1311, 12syl 14 . . . . . . . . 9  |-  ( ph  ->  F : ( M ... N ) --> ( M ... N ) )
1413ffvelcdmda 5672 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  ( M ... N ) )
15 elfzuz 10053 . . . . . . . 8  |-  ( ( F `  k )  e.  ( M ... N )  ->  ( F `  k )  e.  ( ZZ>= `  M )
)
1614, 15syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  (
ZZ>= `  M ) )
177, 10, 16rspcdva 2861 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  ( F `  k
) )  e.  S
)
184, 17eqeltrd 2266 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  if (
k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) )  e.  S )
19 breq1 4021 . . . . . . 7  |-  ( a  =  k  ->  (
a  <_  N  <->  k  <_  N ) )
20 2fveq3 5539 . . . . . . 7  |-  ( a  =  k  ->  ( G `  ( F `  a ) )  =  ( G `  ( F `  k )
) )
2119, 20ifbieq1d 3571 . . . . . 6  |-  ( a  =  k  ->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) )  =  if ( k  <_  N ,  ( G `  ( F `
 k ) ) ,  ( G `  M ) ) )
22 eqid 2189 . . . . . 6  |-  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) )  =  ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) )
2321, 22fvmptg 5613 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  if ( k  <_  N ,  ( G `  ( F `  k ) ) ,  ( G `
 M ) )  e.  S )  -> 
( ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) ) `  k
)  =  if ( k  <_  N , 
( G `  ( F `  k )
) ,  ( G `
 M ) ) )
245, 18, 23syl2an2 594 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  k )  =  if ( k  <_  N ,  ( G `  ( F `
 k ) ) ,  ( G `  M ) ) )
25 iseqf1o.8 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( G `  ( F `
 k ) ) )
264, 24, 253eqtr4rd 2233 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( H `  k )  =  ( ( a  e.  (
ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) ) ) `  k ) )
27 iseqf1o.h . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  x )  e.  S
)
28 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
29 fveq2 5534 . . . . . . . 8  |-  ( b  =  ( F `  x )  ->  ( G `  b )  =  ( G `  ( F `  x ) ) )
3029eleq1d 2258 . . . . . . 7  |-  ( b  =  ( F `  x )  ->  (
( G `  b
)  e.  S  <->  ( G `  ( F `  x
) )  e.  S
) )
31 fveq2 5534 . . . . . . . . . . 11  |-  ( x  =  b  ->  ( G `  x )  =  ( G `  b ) )
3231eleq1d 2258 . . . . . . . . . 10  |-  ( x  =  b  ->  (
( G `  x
)  e.  S  <->  ( G `  b )  e.  S
) )
3332cbvralv 2718 . . . . . . . . 9  |-  ( A. x  e.  ( ZZ>= `  M ) ( G `
 x )  e.  S  <->  A. b  e.  (
ZZ>= `  M ) ( G `  b )  e.  S )
349, 33sylib 122 . . . . . . . 8  |-  ( ph  ->  A. b  e.  (
ZZ>= `  M ) ( G `  b )  e.  S )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  A. b  e.  ( ZZ>= `  M )
( G `  b
)  e.  S )
3613ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  F :
( M ... N
) --> ( M ... N ) )
37 eluzel2 9564 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
381, 37syl 14 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
3938ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  M  e.  ZZ )
40 eluzelz 9568 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
411, 40syl 14 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
4241ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  N  e.  ZZ )
43 eluzelz 9568 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
4443ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ZZ )
45 eluzle 9571 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
4645ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  M  <_  x )
47 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  <_  N )
48 elfz4 10050 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  N ) )  ->  x  e.  ( M ... N ) )
4939, 42, 44, 46, 47, 48syl32anc 1257 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( M ... N ) )
5036, 49ffvelcdmd 5673 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( F `  x )  e.  ( M ... N ) )
51 elfzuz 10053 . . . . . . . 8  |-  ( ( F `  x )  e.  ( M ... N )  ->  ( F `  x )  e.  ( ZZ>= `  M )
)
5250, 51syl 14 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( F `  x )  e.  (
ZZ>= `  M ) )
5330, 35, 52rspcdva 2861 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( G `  ( F `  x
) )  e.  S
)
54 fveq2 5534 . . . . . . . . 9  |-  ( x  =  M  ->  ( G `  x )  =  ( G `  M ) )
5554eleq1d 2258 . . . . . . . 8  |-  ( x  =  M  ->  (
( G `  x
)  e.  S  <->  ( G `  M )  e.  S
) )
56 uzid 9573 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
5738, 56syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
5855, 9, 57rspcdva 2861 . . . . . . 7  |-  ( ph  ->  ( G `  M
)  e.  S )
5958ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  ( G `  M )  e.  S )
6041adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
61 zdcle 9360 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  <_  N )
6243, 60, 61syl2an2 594 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  <_  N )
6353, 59, 62ifcldadc 3578 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) )  e.  S )
64 breq1 4021 . . . . . . 7  |-  ( a  =  x  ->  (
a  <_  N  <->  x  <_  N ) )
65 2fveq3 5539 . . . . . . 7  |-  ( a  =  x  ->  ( G `  ( F `  a ) )  =  ( G `  ( F `  x )
) )
6664, 65ifbieq1d 3571 . . . . . 6  |-  ( a  =  x  ->  if ( a  <_  N ,  ( G `  ( F `  a ) ) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( F `
 x ) ) ,  ( G `  M ) ) )
6766, 22fvmptg 5613 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M )  /\  if ( x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) )  e.  S )  -> 
( ( a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N ,  ( G `  ( F `  a
) ) ,  ( G `  M ) ) ) `  x
)  =  if ( x  <_  N , 
( G `  ( F `  x )
) ,  ( G `
 M ) ) )
6828, 63, 67syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  x )  =  if ( x  <_  N ,  ( G `  ( F `
 x ) ) ,  ( G `  M ) ) )
6968, 63eqeltrd 2266 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( (
a  e.  ( ZZ>= `  M )  |->  if ( a  <_  N , 
( G `  ( F `  a )
) ,  ( G `
 M ) ) ) `  x )  e.  S )
70 iseqf1o.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
711, 26, 27, 69, 70seq3fveq 10504 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) ) ) `  N ) )
72 iseqf1o.2 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
73 iseqf1o.3 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7466cbvmptv 4114 . . 3  |-  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x
) ) ,  ( G `  M ) ) )
7570, 72, 73, 1, 11, 8, 74seq3f1oleml 10536 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  ( a  e.  ( ZZ>= `  M
)  |->  if ( a  <_  N ,  ( G `  ( F `
 a ) ) ,  ( G `  M ) ) ) ) `  N )  =  (  seq M
(  .+  ,  G
) `  N )
)
7671, 75eqtrd 2222 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   ifcif 3549   class class class wbr 4018    |-> cmpt 4079   -->wf 5231   -1-1-onto->wf1o 5234   ` cfv 5235  (class class class)co 5897    <_ cle 8024   ZZcz 9284   ZZ>=cuz 9559   ...cfz 10040    seqcseq 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-1o 6442  df-er 6560  df-en 6768  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285  df-uz 9560  df-fz 10041  df-fzo 10175  df-seqfrec 10479
This theorem is referenced by:  summodclem3  11423  prodmodclem3  11618
  Copyright terms: Public domain W3C validator