| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl31anc.5 |
|
| Ref | Expression |
|---|---|
| syl31anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. . 3
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1180 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | syl31anc.5 |
. 2
| |
| 7 | 4, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl32anc 1258 stoic4b 1453 enq0tr 7547 ltmul12a 8933 lt2msq1 8958 ledivp1 8976 lemul1ad 9012 lemul2ad 9013 lediv2ad 9841 xaddge0 10000 difelfznle 10257 expubnd 10741 nn0leexp2 10855 expcanlem 10860 expcand 10862 swrds1 11121 ccatswrd 11123 xrmaxaddlem 11571 mertenslemi1 11846 eftlub 12001 dvdsadd 12147 3dvds 12175 divalgmod 12238 bitsfzolem 12265 bitsfzo 12266 bitsmod 12267 bitsinv1lem 12272 gcdzeq 12343 rplpwr 12348 sqgcd 12350 bezoutr 12353 rpmulgcd2 12417 rpdvds 12421 isprm5 12464 divgcdodd 12465 oddpwdclemxy 12491 divnumden 12518 crth 12546 phimullem 12547 coprimeprodsq2 12581 pythagtriplem19 12605 pclemub 12610 pcpre1 12615 pcidlem 12646 pockthlem 12679 prmunb 12685 kerf1ghm 13610 elrhmunit 13939 rrgnz 14030 znunit 14421 xblss2ps 14876 xblss2 14877 metcnpi3 14989 limcimolemlt 15136 limccnp2cntop 15149 dvmulxxbr 15174 dvcoapbr 15179 ltexp2d 15414 mpodvdsmulf1o 15462 lgsquad2lem2 15559 2lgsoddprmlem1 15582 2sqlem8a 15599 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |