Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | |
sylXanc.2 | |
sylXanc.3 | |
sylXanc.4 | |
syl31anc.5 |
Ref | Expression |
---|---|
syl31anc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . . 3 | |
2 | sylXanc.2 | . . 3 | |
3 | sylXanc.3 | . . 3 | |
4 | 1, 2, 3 | 3jca 1177 | . 2 |
5 | sylXanc.4 | . 2 | |
6 | syl31anc.5 | . 2 | |
7 | 4, 5, 6 | syl2anc 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: syl32anc 1246 stoic4b 1431 enq0tr 7408 ltmul12a 8790 lt2msq1 8815 ledivp1 8833 lemul1ad 8869 lemul2ad 8870 lediv2ad 9690 xaddge0 9849 difelfznle 10105 expubnd 10547 nn0leexp2 10659 expcanlem 10663 expcand 10665 xrmaxaddlem 11236 mertenslemi1 11511 eftlub 11666 dvdsadd 11811 divalgmod 11899 gcdzeq 11990 rplpwr 11995 sqgcd 11997 bezoutr 12000 rpmulgcd2 12062 rpdvds 12066 isprm5 12109 divgcdodd 12110 oddpwdclemxy 12136 divnumden 12163 crth 12191 phimullem 12192 coprimeprodsq2 12225 pythagtriplem19 12249 pclemub 12254 pcpre1 12259 pcidlem 12289 pockthlem 12321 prmunb 12327 xblss2ps 13484 xblss2 13485 metcnpi3 13597 limcimolemlt 13713 limccnp2cntop 13726 dvmulxxbr 13746 dvcoapbr 13751 2sqlem8a 14038 2sqlem8 14039 |
Copyright terms: Public domain | W3C validator |