![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.4 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl31anc.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl31anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylXanc.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sylXanc.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3jca 1179 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | sylXanc.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | syl31anc.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl32anc 1257 stoic4b 1444 enq0tr 7496 ltmul12a 8881 lt2msq1 8906 ledivp1 8924 lemul1ad 8960 lemul2ad 8961 lediv2ad 9788 xaddge0 9947 difelfznle 10204 expubnd 10670 nn0leexp2 10784 expcanlem 10789 expcand 10791 xrmaxaddlem 11406 mertenslemi1 11681 eftlub 11836 dvdsadd 11982 divalgmod 12071 gcdzeq 12162 rplpwr 12167 sqgcd 12169 bezoutr 12172 rpmulgcd2 12236 rpdvds 12240 isprm5 12283 divgcdodd 12284 oddpwdclemxy 12310 divnumden 12337 crth 12365 phimullem 12366 coprimeprodsq2 12399 pythagtriplem19 12423 pclemub 12428 pcpre1 12433 pcidlem 12464 pockthlem 12497 prmunb 12503 kerf1ghm 13347 elrhmunit 13676 rrgnz 13767 znunit 14158 xblss2ps 14583 xblss2 14584 metcnpi3 14696 limcimolemlt 14843 limccnp2cntop 14856 dvmulxxbr 14881 dvcoapbr 14886 lgsquad2lem2 15239 2lgsoddprmlem1 15262 2sqlem8a 15279 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |