| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl31anc.5 |
|
| Ref | Expression |
|---|---|
| syl31anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. . 3
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1179 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | syl31anc.5 |
. 2
| |
| 7 | 4, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl32anc 1257 stoic4b 1444 enq0tr 7518 ltmul12a 8904 lt2msq1 8929 ledivp1 8947 lemul1ad 8983 lemul2ad 8984 lediv2ad 9811 xaddge0 9970 difelfznle 10227 expubnd 10705 nn0leexp2 10819 expcanlem 10824 expcand 10826 xrmaxaddlem 11442 mertenslemi1 11717 eftlub 11872 dvdsadd 12018 3dvds 12046 divalgmod 12109 bitsfzolem 12136 bitsfzo 12137 bitsmod 12138 bitsinv1lem 12143 gcdzeq 12214 rplpwr 12219 sqgcd 12221 bezoutr 12224 rpmulgcd2 12288 rpdvds 12292 isprm5 12335 divgcdodd 12336 oddpwdclemxy 12362 divnumden 12389 crth 12417 phimullem 12418 coprimeprodsq2 12452 pythagtriplem19 12476 pclemub 12481 pcpre1 12486 pcidlem 12517 pockthlem 12550 prmunb 12556 kerf1ghm 13480 elrhmunit 13809 rrgnz 13900 znunit 14291 xblss2ps 14724 xblss2 14725 metcnpi3 14837 limcimolemlt 14984 limccnp2cntop 14997 dvmulxxbr 15022 dvcoapbr 15027 ltexp2d 15262 mpodvdsmulf1o 15310 lgsquad2lem2 15407 2lgsoddprmlem1 15430 2sqlem8a 15447 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |