| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl31anc.5 |
|
| Ref | Expression |
|---|---|
| syl31anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. . 3
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1201 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | syl31anc.5 |
. 2
| |
| 7 | 4, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl32anc 1279 stoic4b 1475 enq0tr 7617 ltmul12a 9003 lt2msq1 9028 ledivp1 9046 lemul1ad 9082 lemul2ad 9083 lediv2ad 9911 xaddge0 10070 difelfznle 10327 expubnd 10813 nn0leexp2 10927 expcanlem 10932 expcand 10934 swrds1 11195 ccatswrd 11197 pfxfv 11211 swrdccatin1 11252 pfxccatin12lem3 11259 xrmaxaddlem 11766 mertenslemi1 12041 eftlub 12196 dvdsadd 12342 3dvds 12370 divalgmod 12433 bitsfzolem 12460 bitsfzo 12461 bitsmod 12462 bitsinv1lem 12467 gcdzeq 12538 rplpwr 12543 sqgcd 12545 bezoutr 12548 rpmulgcd2 12612 rpdvds 12616 isprm5 12659 divgcdodd 12660 oddpwdclemxy 12686 divnumden 12713 crth 12741 phimullem 12742 coprimeprodsq2 12776 pythagtriplem19 12800 pclemub 12805 pcpre1 12810 pcidlem 12841 pockthlem 12874 prmunb 12880 kerf1ghm 13806 elrhmunit 14135 rrgnz 14226 znunit 14617 xblss2ps 15072 xblss2 15073 metcnpi3 15185 limcimolemlt 15332 limccnp2cntop 15345 dvmulxxbr 15370 dvcoapbr 15375 ltexp2d 15610 mpodvdsmulf1o 15658 lgsquad2lem2 15755 2lgsoddprmlem1 15778 2sqlem8a 15795 2sqlem8 15796 |
| Copyright terms: Public domain | W3C validator |