| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl31anc.5 |
|
| Ref | Expression |
|---|---|
| syl31anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. . 3
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1180 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | syl31anc.5 |
. 2
| |
| 7 | 4, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl32anc 1258 stoic4b 1453 enq0tr 7582 ltmul12a 8968 lt2msq1 8993 ledivp1 9011 lemul1ad 9047 lemul2ad 9048 lediv2ad 9876 xaddge0 10035 difelfznle 10292 expubnd 10778 nn0leexp2 10892 expcanlem 10897 expcand 10899 swrds1 11159 ccatswrd 11161 pfxfv 11175 swrdccatin1 11216 pfxccatin12lem3 11223 xrmaxaddlem 11686 mertenslemi1 11961 eftlub 12116 dvdsadd 12262 3dvds 12290 divalgmod 12353 bitsfzolem 12380 bitsfzo 12381 bitsmod 12382 bitsinv1lem 12387 gcdzeq 12458 rplpwr 12463 sqgcd 12465 bezoutr 12468 rpmulgcd2 12532 rpdvds 12536 isprm5 12579 divgcdodd 12580 oddpwdclemxy 12606 divnumden 12633 crth 12661 phimullem 12662 coprimeprodsq2 12696 pythagtriplem19 12720 pclemub 12725 pcpre1 12730 pcidlem 12761 pockthlem 12794 prmunb 12800 kerf1ghm 13725 elrhmunit 14054 rrgnz 14145 znunit 14536 xblss2ps 14991 xblss2 14992 metcnpi3 15104 limcimolemlt 15251 limccnp2cntop 15264 dvmulxxbr 15289 dvcoapbr 15294 ltexp2d 15529 mpodvdsmulf1o 15577 lgsquad2lem2 15674 2lgsoddprmlem1 15697 2sqlem8a 15714 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |