ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl31anc Unicode version

Theorem syl31anc 1236
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
syl31anc.5  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ta )  ->  et )
Assertion
Ref Expression
syl31anc  |-  ( ph  ->  et )

Proof of Theorem syl31anc
StepHypRef Expression
1 sylXanc.1 . . 3  |-  ( ph  ->  ps )
2 sylXanc.2 . . 3  |-  ( ph  ->  ch )
3 sylXanc.3 . . 3  |-  ( ph  ->  th )
41, 2, 33jca 1172 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
5 sylXanc.4 . 2  |-  ( ph  ->  ta )
6 syl31anc.5 . 2  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ta )  ->  et )
74, 5, 6syl2anc 409 1  |-  ( ph  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  syl32anc  1241  stoic4b  1426  enq0tr  7396  ltmul12a  8776  lt2msq1  8801  ledivp1  8819  lemul1ad  8855  lemul2ad  8856  lediv2ad  9676  xaddge0  9835  difelfznle  10091  expubnd  10533  nn0leexp2  10645  expcanlem  10649  expcand  10651  xrmaxaddlem  11223  mertenslemi1  11498  eftlub  11653  dvdsadd  11798  divalgmod  11886  gcdzeq  11977  rplpwr  11982  sqgcd  11984  bezoutr  11987  rpmulgcd2  12049  rpdvds  12053  isprm5  12096  divgcdodd  12097  oddpwdclemxy  12123  divnumden  12150  crth  12178  phimullem  12179  coprimeprodsq2  12212  pythagtriplem19  12236  pclemub  12241  pcpre1  12246  pcidlem  12276  pockthlem  12308  prmunb  12314  xblss2ps  13198  xblss2  13199  metcnpi3  13311  limcimolemlt  13427  limccnp2cntop  13440  dvmulxxbr  13460  dvcoapbr  13465  2sqlem8a  13752  2sqlem8  13753
  Copyright terms: Public domain W3C validator