| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl31anc.5 |
|
| Ref | Expression |
|---|---|
| syl31anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. . 3
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1179 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | syl31anc.5 |
. 2
| |
| 7 | 4, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl32anc 1257 stoic4b 1452 enq0tr 7546 ltmul12a 8932 lt2msq1 8957 ledivp1 8975 lemul1ad 9011 lemul2ad 9012 lediv2ad 9840 xaddge0 9999 difelfznle 10256 expubnd 10739 nn0leexp2 10853 expcanlem 10858 expcand 10860 xrmaxaddlem 11542 mertenslemi1 11817 eftlub 11972 dvdsadd 12118 3dvds 12146 divalgmod 12209 bitsfzolem 12236 bitsfzo 12237 bitsmod 12238 bitsinv1lem 12243 gcdzeq 12314 rplpwr 12319 sqgcd 12321 bezoutr 12324 rpmulgcd2 12388 rpdvds 12392 isprm5 12435 divgcdodd 12436 oddpwdclemxy 12462 divnumden 12489 crth 12517 phimullem 12518 coprimeprodsq2 12552 pythagtriplem19 12576 pclemub 12581 pcpre1 12586 pcidlem 12617 pockthlem 12650 prmunb 12656 kerf1ghm 13581 elrhmunit 13910 rrgnz 14001 znunit 14392 xblss2ps 14847 xblss2 14848 metcnpi3 14960 limcimolemlt 15107 limccnp2cntop 15120 dvmulxxbr 15145 dvcoapbr 15150 ltexp2d 15385 mpodvdsmulf1o 15433 lgsquad2lem2 15530 2lgsoddprmlem1 15553 2sqlem8a 15570 2sqlem8 15571 |
| Copyright terms: Public domain | W3C validator |