| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl31anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl31anc.5 |
|
| Ref | Expression |
|---|---|
| syl31anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. . 3
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1179 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | syl31anc.5 |
. 2
| |
| 7 | 4, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl32anc 1257 stoic4b 1444 enq0tr 7501 ltmul12a 8887 lt2msq1 8912 ledivp1 8930 lemul1ad 8966 lemul2ad 8967 lediv2ad 9794 xaddge0 9953 difelfznle 10210 expubnd 10688 nn0leexp2 10802 expcanlem 10807 expcand 10809 xrmaxaddlem 11425 mertenslemi1 11700 eftlub 11855 dvdsadd 12001 3dvds 12029 divalgmod 12092 bitsfzolem 12118 bitsfzo 12119 gcdzeq 12189 rplpwr 12194 sqgcd 12196 bezoutr 12199 rpmulgcd2 12263 rpdvds 12267 isprm5 12310 divgcdodd 12311 oddpwdclemxy 12337 divnumden 12364 crth 12392 phimullem 12393 coprimeprodsq2 12427 pythagtriplem19 12451 pclemub 12456 pcpre1 12461 pcidlem 12492 pockthlem 12525 prmunb 12531 kerf1ghm 13404 elrhmunit 13733 rrgnz 13824 znunit 14215 xblss2ps 14640 xblss2 14641 metcnpi3 14753 limcimolemlt 14900 limccnp2cntop 14913 dvmulxxbr 14938 dvcoapbr 14943 ltexp2d 15178 mpodvdsmulf1o 15226 lgsquad2lem2 15323 2lgsoddprmlem1 15346 2sqlem8a 15363 2sqlem8 15364 |
| Copyright terms: Public domain | W3C validator |