ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3 Unicode version

Theorem tfr1onlem3 6447
Description: Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3 6420 but for tfr1on 6459 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfr1onlem3  |-  A  =  { g  |  E. z  e.  X  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w
) ) ) }
Distinct variable groups:    f, G, w, x, y, z    f, X, x, z    A, g   
f, g, w, x, y, z
Allowed substitution hints:    A( x, y, z, w, f)    G( g)    X( y, w, g)

Proof of Theorem tfr1onlem3
StepHypRef Expression
1 vex 2779 . . 3  |-  g  e. 
_V
2 tfr1onlem3ag.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
32tfr1onlem3ag 6446 . . 3  |-  ( g  e.  _V  ->  (
g  e.  A  <->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) ) )
41, 3ax-mp 5 . 2  |-  ( g  e.  A  <->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
54abbi2i 2322 1  |-  A  =  { g  |  E. z  e.  X  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w
) ) ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   _Vcvv 2776    |` cres 4695    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by:  tfr1on  6459
  Copyright terms: Public domain W3C validator