Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3 Unicode version

Theorem tfr1onlem3 6228
 Description: Lemma for transfinite recursion. This lemma changes some bound variables in (version of tfrlem3 6201 but for tfr1on 6240 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1
Assertion
Ref Expression
tfr1onlem3
Distinct variable groups:   ,,,,,   ,,,   ,   ,,,,,
Allowed substitution hints:   (,,,,)   ()   (,,)

Proof of Theorem tfr1onlem3
StepHypRef Expression
1 vex 2684 . . 3
2 tfr1onlem3ag.1 . . . 4
32tfr1onlem3ag 6227 . . 3
41, 3ax-mp 5 . 2
54abbi2i 2252 1
 Colors of variables: wff set class Syntax hints:   wa 103   wb 104   wceq 1331   wcel 1480  cab 2123  wral 2414  wrex 2415  cvv 2681   cres 4536   wfn 5113  cfv 5118 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126 This theorem is referenced by:  tfr1on  6240
 Copyright terms: Public domain W3C validator