ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3 Unicode version

Theorem tfr1onlem3 6391
Description: Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3 6364 but for tfr1on 6403 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfr1onlem3  |-  A  =  { g  |  E. z  e.  X  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w
) ) ) }
Distinct variable groups:    f, G, w, x, y, z    f, X, x, z    A, g   
f, g, w, x, y, z
Allowed substitution hints:    A( x, y, z, w, f)    G( g)    X( y, w, g)

Proof of Theorem tfr1onlem3
StepHypRef Expression
1 vex 2763 . . 3  |-  g  e. 
_V
2 tfr1onlem3ag.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
32tfr1onlem3ag 6390 . . 3  |-  ( g  e.  _V  ->  (
g  e.  A  <->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) ) )
41, 3ax-mp 5 . 2  |-  ( g  e.  A  <->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
54abbi2i 2308 1  |-  A  =  { g  |  E. z  e.  X  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w
) ) ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    |` cres 4661    Fn wfn 5249   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  tfr1on  6403
  Copyright terms: Public domain W3C validator