ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3 Unicode version

Theorem tfr1onlem3 6306
Description: Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3 6279 but for tfr1on 6318 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfr1onlem3  |-  A  =  { g  |  E. z  e.  X  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w
) ) ) }
Distinct variable groups:    f, G, w, x, y, z    f, X, x, z    A, g   
f, g, w, x, y, z
Allowed substitution hints:    A( x, y, z, w, f)    G( g)    X( y, w, g)

Proof of Theorem tfr1onlem3
StepHypRef Expression
1 vex 2729 . . 3  |-  g  e. 
_V
2 tfr1onlem3ag.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
32tfr1onlem3ag 6305 . . 3  |-  ( g  e.  _V  ->  (
g  e.  A  <->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) ) )
41, 3ax-mp 5 . 2  |-  ( g  e.  A  <->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
54abbi2i 2281 1  |-  A  =  { g  |  E. z  e.  X  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w
) ) ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   _Vcvv 2726    |` cres 4606    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tfr1on  6318
  Copyright terms: Public domain W3C validator