ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3 Unicode version

Theorem tfrlem3 6312
Description: Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
Hypothesis
Ref Expression
tfrlem3.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem3  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) }
Distinct variable groups:    A, g    f,
g, w, x, y, z, F
Allowed substitution hints:    A( x, y, z, w, f)

Proof of Theorem tfrlem3
StepHypRef Expression
1 tfrlem3.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
2 vex 2741 . . 3  |-  g  e. 
_V
31, 2tfrlem3a 6311 . 2  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
43abbi2i 2292 1  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   {cab 2163   A.wral 2455   E.wrex 2456   Oncon0 4364    |` cres 4629    Fn wfn 5212   ` cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225
This theorem is referenced by:  tfrlem4  6314  tfrlem8  6319  tfrlemi1  6333  tfrexlem  6335  tfri1d  6336  tfrex  6369
  Copyright terms: Public domain W3C validator