Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem3 | Unicode version |
Description: Lemma for transfinite recursion. Let be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in for later use. (Contributed by NM, 9-Apr-1995.) |
Ref | Expression |
---|---|
tfrlem3.1 |
Ref | Expression |
---|---|
tfrlem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem3.1 | . . 3 | |
2 | vex 2729 | . . 3 | |
3 | 1, 2 | tfrlem3a 6278 | . 2 |
4 | 3 | abbi2i 2281 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 cab 2151 wral 2444 wrex 2445 con0 4341 cres 4606 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: tfrlem4 6281 tfrlem8 6286 tfrlemi1 6300 tfrexlem 6302 tfri1d 6303 tfrex 6336 |
Copyright terms: Public domain | W3C validator |