ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1on Unicode version

Theorem tfr1on 6368
Description: Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1on.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1on.yx  |-  ( ph  ->  Y  e.  X )
Assertion
Ref Expression
tfr1on  |-  ( ph  ->  Y  C_  dom  F )
Distinct variable groups:    f, G, x   
f, X, x    f, Y, x    ph, f, x
Allowed substitution hints:    F( x, f)

Proof of Theorem tfr1on
Dummy variables  a  b  c  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfr1on.f . 2  |-  F  = recs ( G )
2 tfr1on.g . 2  |-  ( ph  ->  Fun  G )
3 tfr1on.x . 2  |-  ( ph  ->  Ord  X )
4 tfr1on.ex . 2  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
5 eqid 2188 . . 3  |-  { a  |  E. b  e.  X  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  X  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
65tfr1onlem3 6356 . 2  |-  { a  |  E. b  e.  X  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }  =  { f  |  E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
7 tfr1on.u . 2  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfr1on.yx . 2  |-  ( ph  ->  Y  e.  X )
91, 2, 3, 4, 6, 7, 8tfr1onlemres 6367 1  |-  ( ph  ->  Y  C_  dom  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2159   {cab 2174   A.wral 2467   E.wrex 2468   _Vcvv 2751    C_ wss 3143   U.cuni 3823   Ord word 4376   suc csuc 4379   dom cdm 4640    |` cres 4642   Fun wfun 5224    Fn wfn 5225   ` cfv 5230  recscrecs 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-iord 4380  df-on 4382  df-suc 4385  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-recs 6323
This theorem is referenced by:  tfri1dALT  6369
  Copyright terms: Public domain W3C validator