ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3 GIF version

Theorem tfr1onlem3 6396
Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3 6369 but for tfr1on 6408 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
Assertion
Ref Expression
tfr1onlem3 𝐴 = {𝑔 ∣ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
Distinct variable groups:   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑧   𝐴,𝑔   𝑓,𝑔,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)   𝐺(𝑔)   𝑋(𝑦,𝑤,𝑔)

Proof of Theorem tfr1onlem3
StepHypRef Expression
1 vex 2766 . . 3 𝑔 ∈ V
2 tfr1onlem3ag.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
32tfr1onlem3ag 6395 . . 3 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))))
41, 3ax-mp 5 . 2 (𝑔𝐴 ↔ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
54abbi2i 2311 1 𝐴 = {𝑔 ∣ ∃𝑧𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤)))}
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  cres 4665   Fn wfn 5253  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  tfr1on  6408
  Copyright terms: Public domain W3C validator