Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr1onlem3 | GIF version |
Description: Lemma for transfinite recursion. This lemma changes some bound variables in 𝐴 (version of tfrlem3 6287 but for tfr1on 6326 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.) |
Ref | Expression |
---|---|
tfr1onlem3ag.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfr1onlem3 | ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ 𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . 3 ⊢ 𝑔 ∈ V | |
2 | tfr1onlem3ag.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfr1onlem3ag 6313 | . . 3 ⊢ (𝑔 ∈ V → (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤))))) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ 𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))) |
5 | 4 | abbi2i 2285 | 1 ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ 𝑋 (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐺‘(𝑔 ↾ 𝑤)))} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∃wrex 2449 Vcvv 2730 ↾ cres 4611 Fn wfn 5191 ‘cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-res 4621 df-iota 5158 df-fun 5198 df-fn 5199 df-fv 5204 |
This theorem is referenced by: tfr1on 6326 |
Copyright terms: Public domain | W3C validator |