ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucfn Unicode version

Theorem tfr1onlemsucfn 6486
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6496. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlemsucfn.3  |-  ( ph  ->  z  e.  X )
tfr1onlemsucfn.4  |-  ( ph  ->  g  Fn  z )
tfr1onlemsucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfr1onlemsucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  Fn  suc  z )
Distinct variable groups:    f, G, x   
f, X, x    f,
g    ph, f, x    z,
f, x
Allowed substitution hints:    ph( y, z, g)    A( x, y, z, f, g)    F( x, y, z, f, g)    G( y, z, g)    X( y, z, g)

Proof of Theorem tfr1onlemsucfn
StepHypRef Expression
1 tfr1onlemsucfn.3 . . 3  |-  ( ph  ->  z  e.  X )
21elexd 2813 . 2  |-  ( ph  ->  z  e.  _V )
3 fneq2 5410 . . . . . 6  |-  ( x  =  z  ->  (
f  Fn  x  <->  f  Fn  z ) )
43imbi1d 231 . . . . 5  |-  ( x  =  z  ->  (
( f  Fn  x  ->  ( G `  f
)  e.  _V )  <->  ( f  Fn  z  -> 
( G `  f
)  e.  _V )
) )
54albidv 1870 . . . 4  |-  ( x  =  z  ->  ( A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) 
<-> 
A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) ) )
6 tfr1on.ex . . . . . . 7  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
763expia 1229 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
f  Fn  x  -> 
( G `  f
)  e.  _V )
)
87alrimiv 1920 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
98ralrimiva 2603 . . . 4  |-  ( ph  ->  A. x  e.  X  A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) )
105, 9, 1rspcdva 2912 . . 3  |-  ( ph  ->  A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) )
11 tfr1onlemsucfn.4 . . 3  |-  ( ph  ->  g  Fn  z )
12 fneq1 5409 . . . . 5  |-  ( f  =  g  ->  (
f  Fn  z  <->  g  Fn  z ) )
13 fveq2 5627 . . . . . 6  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
1413eleq1d 2298 . . . . 5  |-  ( f  =  g  ->  (
( G `  f
)  e.  _V  <->  ( G `  g )  e.  _V ) )
1512, 14imbi12d 234 . . . 4  |-  ( f  =  g  ->  (
( f  Fn  z  ->  ( G `  f
)  e.  _V )  <->  ( g  Fn  z  -> 
( G `  g
)  e.  _V )
) )
1615spv 1906 . . 3  |-  ( A. f ( f  Fn  z  ->  ( G `  f )  e.  _V )  ->  ( g  Fn  z  ->  ( G `  g )  e.  _V ) )
1710, 11, 16sylc 62 . 2  |-  ( ph  ->  ( G `  g
)  e.  _V )
18 eqid 2229 . 2  |-  ( g  u.  { <. z ,  ( G `  g ) >. } )  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } )
19 df-suc 4462 . 2  |-  suc  z  =  ( z  u. 
{ z } )
20 tfr1on.x . . . 4  |-  ( ph  ->  Ord  X )
21 ordelon 4474 . . . 4  |-  ( ( Ord  X  /\  z  e.  X )  ->  z  e.  On )
2220, 1, 21syl2anc 411 . . 3  |-  ( ph  ->  z  e.  On )
23 eloni 4466 . . 3  |-  ( z  e.  On  ->  Ord  z )
24 ordirr 4634 . . 3  |-  ( Ord  z  ->  -.  z  e.  z )
2522, 23, 243syl 17 . 2  |-  ( ph  ->  -.  z  e.  z )
262, 17, 11, 18, 19, 25fnunsn 5430 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  Fn  suc  z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002   A.wal 1393    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   _Vcvv 2799    u. cun 3195   {csn 3666   <.cop 3669   Ord word 4453   Oncon0 4454   suc csuc 4456    |` cres 4721   Fun wfun 5312    Fn wfn 5313   ` cfv 5318  recscrecs 6450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  tfr1onlemsucaccv  6487  tfr1onlembfn  6490
  Copyright terms: Public domain W3C validator