Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr1onlemsucfn | Unicode version |
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6318. (Contributed by Jim Kingdon, 12-Mar-2022.) |
Ref | Expression |
---|---|
tfr1on.f | recs |
tfr1on.g | |
tfr1on.x | |
tfr1on.ex | |
tfr1onlemsucfn.1 | |
tfr1onlemsucfn.3 | |
tfr1onlemsucfn.4 | |
tfr1onlemsucfn.5 |
Ref | Expression |
---|---|
tfr1onlemsucfn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr1onlemsucfn.3 | . . 3 | |
2 | 1 | elexd 2739 | . 2 |
3 | fneq2 5277 | . . . . . 6 | |
4 | 3 | imbi1d 230 | . . . . 5 |
5 | 4 | albidv 1812 | . . . 4 |
6 | tfr1on.ex | . . . . . . 7 | |
7 | 6 | 3expia 1195 | . . . . . 6 |
8 | 7 | alrimiv 1862 | . . . . 5 |
9 | 8 | ralrimiva 2539 | . . . 4 |
10 | 5, 9, 1 | rspcdva 2835 | . . 3 |
11 | tfr1onlemsucfn.4 | . . 3 | |
12 | fneq1 5276 | . . . . 5 | |
13 | fveq2 5486 | . . . . . 6 | |
14 | 13 | eleq1d 2235 | . . . . 5 |
15 | 12, 14 | imbi12d 233 | . . . 4 |
16 | 15 | spv 1848 | . . 3 |
17 | 10, 11, 16 | sylc 62 | . 2 |
18 | eqid 2165 | . 2 | |
19 | df-suc 4349 | . 2 | |
20 | tfr1on.x | . . . 4 | |
21 | ordelon 4361 | . . . 4 | |
22 | 20, 1, 21 | syl2anc 409 | . . 3 |
23 | eloni 4353 | . . 3 | |
24 | ordirr 4519 | . . 3 | |
25 | 22, 23, 24 | 3syl 17 | . 2 |
26 | 2, 17, 11, 18, 19, 25 | fnunsn 5295 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 cun 3114 csn 3576 cop 3579 word 4340 con0 4341 csuc 4343 cres 4606 wfun 5182 wfn 5183 cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: tfr1onlemsucaccv 6309 tfr1onlembfn 6312 |
Copyright terms: Public domain | W3C validator |