| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemsucfn | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6459. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1on.f |
|
| tfr1on.g |
|
| tfr1on.x |
|
| tfr1on.ex |
|
| tfr1onlemsucfn.1 |
|
| tfr1onlemsucfn.3 |
|
| tfr1onlemsucfn.4 |
|
| tfr1onlemsucfn.5 |
|
| Ref | Expression |
|---|---|
| tfr1onlemsucfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlemsucfn.3 |
. . 3
| |
| 2 | 1 | elexd 2790 |
. 2
|
| 3 | fneq2 5382 |
. . . . . 6
| |
| 4 | 3 | imbi1d 231 |
. . . . 5
|
| 5 | 4 | albidv 1848 |
. . . 4
|
| 6 | tfr1on.ex |
. . . . . . 7
| |
| 7 | 6 | 3expia 1208 |
. . . . . 6
|
| 8 | 7 | alrimiv 1898 |
. . . . 5
|
| 9 | 8 | ralrimiva 2581 |
. . . 4
|
| 10 | 5, 9, 1 | rspcdva 2889 |
. . 3
|
| 11 | tfr1onlemsucfn.4 |
. . 3
| |
| 12 | fneq1 5381 |
. . . . 5
| |
| 13 | fveq2 5599 |
. . . . . 6
| |
| 14 | 13 | eleq1d 2276 |
. . . . 5
|
| 15 | 12, 14 | imbi12d 234 |
. . . 4
|
| 16 | 15 | spv 1884 |
. . 3
|
| 17 | 10, 11, 16 | sylc 62 |
. 2
|
| 18 | eqid 2207 |
. 2
| |
| 19 | df-suc 4436 |
. 2
| |
| 20 | tfr1on.x |
. . . 4
| |
| 21 | ordelon 4448 |
. . . 4
| |
| 22 | 20, 1, 21 | syl2anc 411 |
. . 3
|
| 23 | eloni 4440 |
. . 3
| |
| 24 | ordirr 4608 |
. . 3
| |
| 25 | 22, 23, 24 | 3syl 17 |
. 2
|
| 26 | 2, 17, 11, 18, 19, 25 | fnunsn 5402 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: tfr1onlemsucaccv 6450 tfr1onlembfn 6453 |
| Copyright terms: Public domain | W3C validator |