| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemsucfn | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6417. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1on.f |
|
| tfr1on.g |
|
| tfr1on.x |
|
| tfr1on.ex |
|
| tfr1onlemsucfn.1 |
|
| tfr1onlemsucfn.3 |
|
| tfr1onlemsucfn.4 |
|
| tfr1onlemsucfn.5 |
|
| Ref | Expression |
|---|---|
| tfr1onlemsucfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlemsucfn.3 |
. . 3
| |
| 2 | 1 | elexd 2776 |
. 2
|
| 3 | fneq2 5348 |
. . . . . 6
| |
| 4 | 3 | imbi1d 231 |
. . . . 5
|
| 5 | 4 | albidv 1838 |
. . . 4
|
| 6 | tfr1on.ex |
. . . . . . 7
| |
| 7 | 6 | 3expia 1207 |
. . . . . 6
|
| 8 | 7 | alrimiv 1888 |
. . . . 5
|
| 9 | 8 | ralrimiva 2570 |
. . . 4
|
| 10 | 5, 9, 1 | rspcdva 2873 |
. . 3
|
| 11 | tfr1onlemsucfn.4 |
. . 3
| |
| 12 | fneq1 5347 |
. . . . 5
| |
| 13 | fveq2 5561 |
. . . . . 6
| |
| 14 | 13 | eleq1d 2265 |
. . . . 5
|
| 15 | 12, 14 | imbi12d 234 |
. . . 4
|
| 16 | 15 | spv 1874 |
. . 3
|
| 17 | 10, 11, 16 | sylc 62 |
. 2
|
| 18 | eqid 2196 |
. 2
| |
| 19 | df-suc 4407 |
. 2
| |
| 20 | tfr1on.x |
. . . 4
| |
| 21 | ordelon 4419 |
. . . 4
| |
| 22 | 20, 1, 21 | syl2anc 411 |
. . 3
|
| 23 | eloni 4411 |
. . 3
| |
| 24 | ordirr 4579 |
. . 3
| |
| 25 | 22, 23, 24 | 3syl 17 |
. 2
|
| 26 | 2, 17, 11, 18, 19, 25 | fnunsn 5368 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: tfr1onlemsucaccv 6408 tfr1onlembfn 6411 |
| Copyright terms: Public domain | W3C validator |