ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemsucfn Unicode version

Theorem tfr1onlemsucfn 6398
Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6408. (Contributed by Jim Kingdon, 12-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlemsucfn.3  |-  ( ph  ->  z  e.  X )
tfr1onlemsucfn.4  |-  ( ph  ->  g  Fn  z )
tfr1onlemsucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfr1onlemsucfn  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  Fn  suc  z )
Distinct variable groups:    f, G, x   
f, X, x    f,
g    ph, f, x    z,
f, x
Allowed substitution hints:    ph( y, z, g)    A( x, y, z, f, g)    F( x, y, z, f, g)    G( y, z, g)    X( y, z, g)

Proof of Theorem tfr1onlemsucfn
StepHypRef Expression
1 tfr1onlemsucfn.3 . . 3  |-  ( ph  ->  z  e.  X )
21elexd 2776 . 2  |-  ( ph  ->  z  e.  _V )
3 fneq2 5347 . . . . . 6  |-  ( x  =  z  ->  (
f  Fn  x  <->  f  Fn  z ) )
43imbi1d 231 . . . . 5  |-  ( x  =  z  ->  (
( f  Fn  x  ->  ( G `  f
)  e.  _V )  <->  ( f  Fn  z  -> 
( G `  f
)  e.  _V )
) )
54albidv 1838 . . . 4  |-  ( x  =  z  ->  ( A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) 
<-> 
A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) ) )
6 tfr1on.ex . . . . . . 7  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
763expia 1207 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
f  Fn  x  -> 
( G `  f
)  e.  _V )
)
87alrimiv 1888 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
98ralrimiva 2570 . . . 4  |-  ( ph  ->  A. x  e.  X  A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) )
105, 9, 1rspcdva 2873 . . 3  |-  ( ph  ->  A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) )
11 tfr1onlemsucfn.4 . . 3  |-  ( ph  ->  g  Fn  z )
12 fneq1 5346 . . . . 5  |-  ( f  =  g  ->  (
f  Fn  z  <->  g  Fn  z ) )
13 fveq2 5558 . . . . . 6  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
1413eleq1d 2265 . . . . 5  |-  ( f  =  g  ->  (
( G `  f
)  e.  _V  <->  ( G `  g )  e.  _V ) )
1512, 14imbi12d 234 . . . 4  |-  ( f  =  g  ->  (
( f  Fn  z  ->  ( G `  f
)  e.  _V )  <->  ( g  Fn  z  -> 
( G `  g
)  e.  _V )
) )
1615spv 1874 . . 3  |-  ( A. f ( f  Fn  z  ->  ( G `  f )  e.  _V )  ->  ( g  Fn  z  ->  ( G `  g )  e.  _V ) )
1710, 11, 16sylc 62 . 2  |-  ( ph  ->  ( G `  g
)  e.  _V )
18 eqid 2196 . 2  |-  ( g  u.  { <. z ,  ( G `  g ) >. } )  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } )
19 df-suc 4406 . 2  |-  suc  z  =  ( z  u. 
{ z } )
20 tfr1on.x . . . 4  |-  ( ph  ->  Ord  X )
21 ordelon 4418 . . . 4  |-  ( ( Ord  X  /\  z  e.  X )  ->  z  e.  On )
2220, 1, 21syl2anc 411 . . 3  |-  ( ph  ->  z  e.  On )
23 eloni 4410 . . 3  |-  ( z  e.  On  ->  Ord  z )
24 ordirr 4578 . . 3  |-  ( Ord  z  ->  -.  z  e.  z )
2522, 23, 243syl 17 . 2  |-  ( ph  ->  -.  z  e.  z )
262, 17, 11, 18, 19, 25fnunsn 5365 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  Fn  suc  z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    u. cun 3155   {csn 3622   <.cop 3625   Ord word 4397   Oncon0 4398   suc csuc 4400    |` cres 4665   Fun wfun 5252    Fn wfn 5253   ` cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  tfr1onlemsucaccv  6399  tfr1onlembfn  6402
  Copyright terms: Public domain W3C validator