| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr1onlemsucfn | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6496. (Contributed by Jim Kingdon, 12-Mar-2022.) |
| Ref | Expression |
|---|---|
| tfr1on.f |
|
| tfr1on.g |
|
| tfr1on.x |
|
| tfr1on.ex |
|
| tfr1onlemsucfn.1 |
|
| tfr1onlemsucfn.3 |
|
| tfr1onlemsucfn.4 |
|
| tfr1onlemsucfn.5 |
|
| Ref | Expression |
|---|---|
| tfr1onlemsucfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr1onlemsucfn.3 |
. . 3
| |
| 2 | 1 | elexd 2813 |
. 2
|
| 3 | fneq2 5410 |
. . . . . 6
| |
| 4 | 3 | imbi1d 231 |
. . . . 5
|
| 5 | 4 | albidv 1870 |
. . . 4
|
| 6 | tfr1on.ex |
. . . . . . 7
| |
| 7 | 6 | 3expia 1229 |
. . . . . 6
|
| 8 | 7 | alrimiv 1920 |
. . . . 5
|
| 9 | 8 | ralrimiva 2603 |
. . . 4
|
| 10 | 5, 9, 1 | rspcdva 2912 |
. . 3
|
| 11 | tfr1onlemsucfn.4 |
. . 3
| |
| 12 | fneq1 5409 |
. . . . 5
| |
| 13 | fveq2 5627 |
. . . . . 6
| |
| 14 | 13 | eleq1d 2298 |
. . . . 5
|
| 15 | 12, 14 | imbi12d 234 |
. . . 4
|
| 16 | 15 | spv 1906 |
. . 3
|
| 17 | 10, 11, 16 | sylc 62 |
. 2
|
| 18 | eqid 2229 |
. 2
| |
| 19 | df-suc 4462 |
. 2
| |
| 20 | tfr1on.x |
. . . 4
| |
| 21 | ordelon 4474 |
. . . 4
| |
| 22 | 20, 1, 21 | syl2anc 411 |
. . 3
|
| 23 | eloni 4466 |
. . 3
| |
| 24 | ordirr 4634 |
. . 3
| |
| 25 | 22, 23, 24 | 3syl 17 |
. 2
|
| 26 | 2, 17, 11, 18, 19, 25 | fnunsn 5430 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: tfr1onlemsucaccv 6487 tfr1onlembfn 6490 |
| Copyright terms: Public domain | W3C validator |