Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr1onlemubacc | Unicode version |
Description: Lemma for tfr1on 6318. The union of satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.) |
Ref | Expression |
---|---|
tfr1on.f | recs |
tfr1on.g | |
tfr1on.x | |
tfr1on.ex | |
tfr1onlemsucfn.1 | |
tfr1onlembacc.3 | |
tfr1onlembacc.u | |
tfr1onlembacc.4 | |
tfr1onlembacc.5 |
Ref | Expression |
---|---|
tfr1onlemubacc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfr1on.f | . . . . . . . . 9 recs | |
2 | tfr1on.g | . . . . . . . . 9 | |
3 | tfr1on.x | . . . . . . . . 9 | |
4 | tfr1on.ex | . . . . . . . . 9 | |
5 | tfr1onlemsucfn.1 | . . . . . . . . 9 | |
6 | tfr1onlembacc.3 | . . . . . . . . 9 | |
7 | tfr1onlembacc.u | . . . . . . . . 9 | |
8 | tfr1onlembacc.4 | . . . . . . . . 9 | |
9 | tfr1onlembacc.5 | . . . . . . . . 9 | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembfn 6312 | . . . . . . . 8 |
11 | fndm 5287 | . . . . . . . 8 | |
12 | 10, 11 | syl 14 | . . . . . . 7 |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfr1onlembacc 6310 | . . . . . . . . . 10 |
14 | 13 | unissd 3813 | . . . . . . . . 9 |
15 | 5, 3 | tfr1onlemssrecs 6307 | . . . . . . . . 9 recs |
16 | 14, 15 | sstrd 3152 | . . . . . . . 8 recs |
17 | dmss 4803 | . . . . . . . 8 recs recs | |
18 | 16, 17 | syl 14 | . . . . . . 7 recs |
19 | 12, 18 | eqsstrrd 3179 | . . . . . 6 recs |
20 | 19 | sselda 3142 | . . . . 5 recs |
21 | eqid 2165 | . . . . . 6 | |
22 | 21 | tfrlem9 6287 | . . . . 5 recs recs recs |
23 | 20, 22 | syl 14 | . . . 4 recs recs |
24 | tfrfun 6288 | . . . . 5 recs | |
25 | 12 | eleq2d 2236 | . . . . . 6 |
26 | 25 | biimpar 295 | . . . . 5 |
27 | funssfv 5512 | . . . . 5 recs recs recs | |
28 | 24, 16, 26, 27 | mp3an2ani 1334 | . . . 4 recs |
29 | ordelon 4361 | . . . . . . . . . 10 | |
30 | 3, 8, 29 | syl2anc 409 | . . . . . . . . 9 |
31 | eloni 4353 | . . . . . . . . 9 | |
32 | 30, 31 | syl 14 | . . . . . . . 8 |
33 | ordelss 4357 | . . . . . . . 8 | |
34 | 32, 33 | sylan 281 | . . . . . . 7 |
35 | 12 | adantr 274 | . . . . . . 7 |
36 | 34, 35 | sseqtrrd 3181 | . . . . . 6 |
37 | fun2ssres 5231 | . . . . . 6 recs recs recs | |
38 | 24, 16, 36, 37 | mp3an2ani 1334 | . . . . 5 recs |
39 | 38 | fveq2d 5490 | . . . 4 recs |
40 | 23, 28, 39 | 3eqtr3d 2206 | . . 3 |
41 | 40 | ralrimiva 2539 | . 2 |
42 | fveq2 5486 | . . . 4 | |
43 | reseq2 4879 | . . . . 5 | |
44 | 43 | fveq2d 5490 | . . . 4 |
45 | 42, 44 | eqeq12d 2180 | . . 3 |
46 | 45 | cbvralv 2692 | . 2 |
47 | 41, 46 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wex 1480 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 cun 3114 wss 3116 csn 3576 cop 3579 cuni 3789 word 4340 con0 4341 csuc 4343 cdm 4604 cres 4606 wfun 5182 wfn 5183 cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-recs 6273 |
This theorem is referenced by: tfr1onlemex 6315 |
Copyright terms: Public domain | W3C validator |