ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemubacc Unicode version

Theorem tfr1onlemubacc 6434
Description: Lemma for tfr1on 6438. The union of  B satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlemubacc  |-  ( ph  ->  A. u  e.  D  ( U. B `  u
)  =  ( G `
 ( U. B  |`  u ) ) )
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z    B, g, h, w, z    u, B, w    D, h, w, z, f, x    u, D    h, G, z, y    u, G, w    g, X, z    ph, w    y, w
Allowed substitution hints:    ph( y, u)    A( y, w, u)    B( x, y, f)    D( y)    F( x, y, z, w, u, f, g, h)    G( g)    X( y, w, u, h)

Proof of Theorem tfr1onlemubacc
StepHypRef Expression
1 tfr1on.f . . . . . . . . 9  |-  F  = recs ( G )
2 tfr1on.g . . . . . . . . 9  |-  ( ph  ->  Fun  G )
3 tfr1on.x . . . . . . . . 9  |-  ( ph  ->  Ord  X )
4 tfr1on.ex . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
5 tfr1onlemsucfn.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfr1onlembacc.3 . . . . . . . . 9  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
7 tfr1onlembacc.u . . . . . . . . 9  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfr1onlembacc.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  X )
9 tfr1onlembacc.5 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembfn 6432 . . . . . . . 8  |-  ( ph  ->  U. B  Fn  D
)
11 fndm 5374 . . . . . . . 8  |-  ( U. B  Fn  D  ->  dom  U. B  =  D
)
1210, 11syl 14 . . . . . . 7  |-  ( ph  ->  dom  U. B  =  D )
131, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembacc 6430 . . . . . . . . . 10  |-  ( ph  ->  B  C_  A )
1413unissd 3874 . . . . . . . . 9  |-  ( ph  ->  U. B  C_  U. A
)
155, 3tfr1onlemssrecs 6427 . . . . . . . . 9  |-  ( ph  ->  U. A  C_ recs ( G ) )
1614, 15sstrd 3203 . . . . . . . 8  |-  ( ph  ->  U. B  C_ recs ( G ) )
17 dmss 4878 . . . . . . . 8  |-  ( U. B  C_ recs ( G )  ->  dom  U. B  C_  dom recs ( G ) )
1816, 17syl 14 . . . . . . 7  |-  ( ph  ->  dom  U. B  C_  dom recs ( G ) )
1912, 18eqsstrrd 3230 . . . . . 6  |-  ( ph  ->  D  C_  dom recs ( G ) )
2019sselda 3193 . . . . 5  |-  ( (
ph  /\  w  e.  D )  ->  w  e.  dom recs ( G ) )
21 eqid 2205 . . . . . 6  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
2221tfrlem9 6407 . . . . 5  |-  ( w  e.  dom recs ( G
)  ->  (recs ( G ) `  w
)  =  ( G `
 (recs ( G )  |`  w )
) )
2320, 22syl 14 . . . 4  |-  ( (
ph  /\  w  e.  D )  ->  (recs ( G ) `  w
)  =  ( G `
 (recs ( G )  |`  w )
) )
24 tfrfun 6408 . . . . 5  |-  Fun recs ( G )
2512eleq2d 2275 . . . . . 6  |-  ( ph  ->  ( w  e.  dom  U. B  <->  w  e.  D
) )
2625biimpar 297 . . . . 5  |-  ( (
ph  /\  w  e.  D )  ->  w  e.  dom  U. B )
27 funssfv 5604 . . . . 5  |-  ( ( Fun recs ( G )  /\  U. B  C_ recs ( G )  /\  w  e.  dom  U. B )  ->  (recs ( G ) `  w )  =  ( U. B `  w ) )
2824, 16, 26, 27mp3an2ani 1357 . . . 4  |-  ( (
ph  /\  w  e.  D )  ->  (recs ( G ) `  w
)  =  ( U. B `  w )
)
29 ordelon 4431 . . . . . . . . . 10  |-  ( ( Ord  X  /\  D  e.  X )  ->  D  e.  On )
303, 8, 29syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  D  e.  On )
31 eloni 4423 . . . . . . . . 9  |-  ( D  e.  On  ->  Ord  D )
3230, 31syl 14 . . . . . . . 8  |-  ( ph  ->  Ord  D )
33 ordelss 4427 . . . . . . . 8  |-  ( ( Ord  D  /\  w  e.  D )  ->  w  C_  D )
3432, 33sylan 283 . . . . . . 7  |-  ( (
ph  /\  w  e.  D )  ->  w  C_  D )
3512adantr 276 . . . . . . 7  |-  ( (
ph  /\  w  e.  D )  ->  dom  U. B  =  D )
3634, 35sseqtrrd 3232 . . . . . 6  |-  ( (
ph  /\  w  e.  D )  ->  w  C_ 
dom  U. B )
37 fun2ssres 5315 . . . . . 6  |-  ( ( Fun recs ( G )  /\  U. B  C_ recs ( G )  /\  w  C_ 
dom  U. B )  -> 
(recs ( G )  |`  w )  =  ( U. B  |`  w
) )
3824, 16, 36, 37mp3an2ani 1357 . . . . 5  |-  ( (
ph  /\  w  e.  D )  ->  (recs ( G )  |`  w
)  =  ( U. B  |`  w ) )
3938fveq2d 5582 . . . 4  |-  ( (
ph  /\  w  e.  D )  ->  ( G `  (recs ( G )  |`  w
) )  =  ( G `  ( U. B  |`  w ) ) )
4023, 28, 393eqtr3d 2246 . . 3  |-  ( (
ph  /\  w  e.  D )  ->  ( U. B `  w )  =  ( G `  ( U. B  |`  w
) ) )
4140ralrimiva 2579 . 2  |-  ( ph  ->  A. w  e.  D  ( U. B `  w
)  =  ( G `
 ( U. B  |`  w ) ) )
42 fveq2 5578 . . . 4  |-  ( u  =  w  ->  ( U. B `  u )  =  ( U. B `  w ) )
43 reseq2 4955 . . . . 5  |-  ( u  =  w  ->  ( U. B  |`  u )  =  ( U. B  |`  w ) )
4443fveq2d 5582 . . . 4  |-  ( u  =  w  ->  ( G `  ( U. B  |`  u ) )  =  ( G `  ( U. B  |`  w
) ) )
4542, 44eqeq12d 2220 . . 3  |-  ( u  =  w  ->  (
( U. B `  u )  =  ( G `  ( U. B  |`  u ) )  <-> 
( U. B `  w )  =  ( G `  ( U. B  |`  w ) ) ) )
4645cbvralv 2738 . 2  |-  ( A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u
) )  <->  A. w  e.  D  ( U. B `  w )  =  ( G `  ( U. B  |`  w
) ) )
4741, 46sylibr 134 1  |-  ( ph  ->  A. u  e.  D  ( U. B `  u
)  =  ( G `
 ( U. B  |`  u ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   _Vcvv 2772    u. cun 3164    C_ wss 3166   {csn 3633   <.cop 3636   U.cuni 3850   Ord word 4410   Oncon0 4411   suc csuc 4413   dom cdm 4676    |` cres 4678   Fun wfun 5266    Fn wfn 5267   ` cfv 5272  recscrecs 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-recs 6393
This theorem is referenced by:  tfr1onlemex  6435
  Copyright terms: Public domain W3C validator