ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem4 Unicode version

Theorem tfrlem4 6366
Description: Lemma for transfinite recursion.  A is the class of all "acceptable" functions, and  F is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem4  |-  ( g  e.  A  ->  Fun  g )
Distinct variable groups:    f, g, x, y, F    A, g
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem4
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem3 6364 . . 3  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) }
32abeq2i 2304 . 2  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
4 fnfun 5351 . . . 4  |-  ( g  Fn  z  ->  Fun  g )
54adantr 276 . . 3  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  Fun  g )
65rexlimivw 2607 . 2  |-  ( E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  Fun  g )
73, 6sylbi 121 1  |-  ( g  e.  A  ->  Fun  g )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   Oncon0 4394    |` cres 4661   Fun wfun 5248    Fn wfn 5249   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  tfrlem6  6369
  Copyright terms: Public domain W3C validator