| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unielrel | GIF version | ||
| Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| unielrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrel 4782 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | simpr 110 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
| 3 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 2776 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | uniopel 4306 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝑅 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅) |
| 6 | 5 | a1i 9 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (〈𝑥, 𝑦〉 ∈ 𝑅 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅)) |
| 7 | eleq1 2269 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) | |
| 8 | unieq 3862 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 = ∪ 〈𝑥, 𝑦〉) | |
| 9 | 8 | eleq1d 2275 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (∪ 𝐴 ∈ ∪ 𝑅 ↔ ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅)) |
| 10 | 6, 7, 9 | 3imtr4d 203 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
| 11 | 10 | exlimivv 1921 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
| 12 | 1, 2, 11 | sylc 62 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 〈cop 3638 ∪ cuni 3853 Rel wrel 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-opab 4111 df-xp 4686 df-rel 4687 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |