ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielrel GIF version

Theorem unielrel 5066
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unielrel ((Rel 𝑅𝐴𝑅) → 𝐴 𝑅)

Proof of Theorem unielrel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 4641 . 2 ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 simpr 109 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴𝑅)
3 vex 2689 . . . . . 6 𝑥 ∈ V
4 vex 2689 . . . . . 6 𝑦 ∈ V
53, 4uniopel 4178 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥, 𝑦⟩ ∈ 𝑅)
65a1i 9 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥, 𝑦⟩ ∈ 𝑅))
7 eleq1 2202 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
8 unieq 3745 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
98eleq1d 2208 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → ( 𝐴 𝑅𝑥, 𝑦⟩ ∈ 𝑅))
106, 7, 93imtr4d 202 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 𝐴 𝑅))
1110exlimivv 1868 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 𝐴 𝑅))
121, 2, 11sylc 62 1 ((Rel 𝑅𝐴𝑅) → 𝐴 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  cop 3530   cuni 3736  Rel wrel 4544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-opab 3990  df-xp 4545  df-rel 4546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator