ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielrel GIF version

Theorem unielrel 4992
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unielrel ((Rel 𝑅𝐴𝑅) → 𝐴 𝑅)

Proof of Theorem unielrel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 4569 . 2 ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 simpr 109 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴𝑅)
3 vex 2636 . . . . . 6 𝑥 ∈ V
4 vex 2636 . . . . . 6 𝑦 ∈ V
53, 4uniopel 4107 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥, 𝑦⟩ ∈ 𝑅)
65a1i 9 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥, 𝑦⟩ ∈ 𝑅))
7 eleq1 2157 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
8 unieq 3684 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
98eleq1d 2163 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → ( 𝐴 𝑅𝑥, 𝑦⟩ ∈ 𝑅))
106, 7, 93imtr4d 202 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 𝐴 𝑅))
1110exlimivv 1831 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 𝐴 𝑅))
121, 2, 11sylc 62 1 ((Rel 𝑅𝐴𝑅) → 𝐴 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wex 1433  wcel 1445  cop 3469   cuni 3675  Rel wrel 4472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-opab 3922  df-xp 4473  df-rel 4474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator