ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wlkmex Unicode version

Theorem wlkmex 16032
Description: If there are walks on a graph, the graph is a set. (Contributed by Jim Kingdon, 1-Feb-2026.)
Assertion
Ref Expression
wlkmex  |-  ( W  e.  (Walks `  G
)  ->  G  e.  _V )

Proof of Theorem wlkmex
Dummy variables  f  g  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wlks 16031 . 2  |- Walks  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( `  f )
) --> (Vtx `  g
)  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } )
21mptrcl 5717 1  |-  ( W  e.  (Walks `  G
)  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4  if-wif 983    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   {csn 3666   {cpr 3667   {copab 4144   dom cdm 4719   -->wf 5314   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002   ...cfz 10204  ..^cfzo 10338  ♯chash 10997  Word cword 11071  Vtxcvtx 15813  iEdgciedg 15814  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326  df-wlks 16031
This theorem is referenced by:  wlkv  16038  wlkcompim  16063  wlkeq  16065  g0wlk0  16081
  Copyright terms: Public domain W3C validator