ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wlkeq Unicode version

Theorem wlkeq 16065
Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
wlkeq  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )  /\  A. x  e.  ( 0 ... N ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) )
Distinct variable groups:    x, A    x, B    x, N
Allowed substitution hint:    G( x)

Proof of Theorem wlkeq
StepHypRef Expression
1 eqid 2229 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2229 . . . . . . 7  |-  (iEdg `  G )  =  (iEdg `  G )
3 eqid 2229 . . . . . . 7  |-  ( 1st `  A )  =  ( 1st `  A )
4 eqid 2229 . . . . . . 7  |-  ( 2nd `  A )  =  ( 2nd `  A )
51, 2, 3, 4wlkelwrd 16064 . . . . . 6  |-  ( A  e.  (Walks `  G
)  ->  ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A
) : ( 0 ... ( `  ( 1st `  A ) ) ) --> (Vtx `  G
) ) )
6 eqid 2229 . . . . . . 7  |-  ( 1st `  B )  =  ( 1st `  B )
7 eqid 2229 . . . . . . 7  |-  ( 2nd `  B )  =  ( 2nd `  B )
81, 2, 6, 7wlkelwrd 16064 . . . . . 6  |-  ( B  e.  (Walks `  G
)  ->  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )
95, 8anim12i 338 . . . . 5  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( (
( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G )
) ) )
10 wlkmex 16032 . . . . . . 7  |-  ( A  e.  (Walks `  G
)  ->  G  e.  _V )
11 wlkcprim 16061 . . . . . . 7  |-  ( A  e.  (Walks `  G
)  ->  ( 1st `  A ) (Walks `  G ) ( 2nd `  A ) )
12 wlklenvm1g 16053 . . . . . . 7  |-  ( ( G  e.  _V  /\  ( 1st `  A ) (Walks `  G )
( 2nd `  A
) )  ->  ( `  ( 1st `  A
) )  =  ( ( `  ( 2nd `  A ) )  - 
1 ) )
1310, 11, 12syl2anc 411 . . . . . 6  |-  ( A  e.  (Walks `  G
)  ->  ( `  ( 1st `  A ) )  =  ( ( `  ( 2nd `  A ) )  -  1 ) )
14 wlkmex 16032 . . . . . . 7  |-  ( B  e.  (Walks `  G
)  ->  G  e.  _V )
15 wlkcprim 16061 . . . . . . 7  |-  ( B  e.  (Walks `  G
)  ->  ( 1st `  B ) (Walks `  G ) ( 2nd `  B ) )
16 wlklenvm1g 16053 . . . . . . 7  |-  ( ( G  e.  _V  /\  ( 1st `  B ) (Walks `  G )
( 2nd `  B
) )  ->  ( `  ( 1st `  B
) )  =  ( ( `  ( 2nd `  B ) )  - 
1 ) )
1714, 15, 16syl2anc 411 . . . . . 6  |-  ( B  e.  (Walks `  G
)  ->  ( `  ( 1st `  B ) )  =  ( ( `  ( 2nd `  B ) )  -  1 ) )
1813, 17anim12i 338 . . . . 5  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( ( `  ( 1st `  A
) )  =  ( ( `  ( 2nd `  A ) )  - 
1 )  /\  ( `  ( 1st `  B
) )  =  ( ( `  ( 2nd `  B ) )  - 
1 ) ) )
19 eqwrd 11112 . . . . . . . 8  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 1st `  B )  e. Word  dom  (iEdg `  G )
)  ->  ( ( 1st `  A )  =  ( 1st `  B
)  <->  ( ( `  ( 1st `  A ) )  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A ) `  x
)  =  ( ( 1st `  B ) `
 x ) ) ) )
2019ad2ant2r 509 . . . . . . 7  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G )
) )  ->  (
( 1st `  A
)  =  ( 1st `  B )  <->  ( ( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) ) ) )
2120adantr 276 . . . . . 6  |-  ( ( ( ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A ) ) ) --> (Vtx `  G )
)  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  /\  ( ( `  ( 1st `  A ) )  =  ( ( `  ( 2nd `  A ) )  -  1 )  /\  ( `  ( 1st `  B
) )  =  ( ( `  ( 2nd `  B ) )  - 
1 ) ) )  ->  ( ( 1st `  A )  =  ( 1st `  B )  <-> 
( ( `  ( 1st `  A ) )  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A ) `  x
)  =  ( ( 1st `  B ) `
 x ) ) ) )
22 lencl 11075 . . . . . . . . 9  |-  ( ( 1st `  A )  e. Word  dom  (iEdg `  G
)  ->  ( `  ( 1st `  A ) )  e.  NN0 )
2322adantr 276 . . . . . . . 8  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G ) )  ->  ( `  ( 1st `  A ) )  e. 
NN0 )
24 simpr 110 . . . . . . . 8  |-  ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G ) )  ->  ( 2nd `  A
) : ( 0 ... ( `  ( 1st `  A ) ) ) --> (Vtx `  G
) )
25 simpr 110 . . . . . . . 8  |-  ( ( ( 1st `  B
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B
) ) ) --> (Vtx
`  G ) )  ->  ( 2nd `  B
) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
) )
26 2ffzeq 10337 . . . . . . . 8  |-  ( ( ( `  ( 1st `  A ) )  e. 
NN0  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A ) ) ) --> (Vtx `  G
)  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
) )  ->  (
( 2nd `  A
)  =  ( 2nd `  B )  <->  ( ( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
2723, 24, 25, 26syl2an3an 1332 . . . . . . 7  |-  ( ( ( ( 1st `  A
)  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A
) ) ) --> (Vtx
`  G ) )  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B ) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G )
) )  ->  (
( 2nd `  A
)  =  ( 2nd `  B )  <->  ( ( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
2827adantr 276 . . . . . 6  |-  ( ( ( ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A ) ) ) --> (Vtx `  G )
)  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  /\  ( ( `  ( 1st `  A ) )  =  ( ( `  ( 2nd `  A ) )  -  1 )  /\  ( `  ( 1st `  B
) )  =  ( ( `  ( 2nd `  B ) )  - 
1 ) ) )  ->  ( ( 2nd `  A )  =  ( 2nd `  B )  <-> 
( ( `  ( 1st `  A ) )  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) )
2921, 28anbi12d 473 . . . . 5  |-  ( ( ( ( ( 1st `  A )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  A ) : ( 0 ... ( `  ( 1st `  A ) ) ) --> (Vtx `  G )
)  /\  ( ( 1st `  B )  e. Word  dom  (iEdg `  G )  /\  ( 2nd `  B
) : ( 0 ... ( `  ( 1st `  B ) ) ) --> (Vtx `  G
) ) )  /\  ( ( `  ( 1st `  A ) )  =  ( ( `  ( 2nd `  A ) )  -  1 )  /\  ( `  ( 1st `  B
) )  =  ( ( `  ( 2nd `  B ) )  - 
1 ) ) )  ->  ( ( ( 1st `  A )  =  ( 1st `  B
)  /\  ( 2nd `  A )  =  ( 2nd `  B ) )  <->  ( ( ( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) ) )
309, 18, 29syl2anc 411 . . . 4  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( (
( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) ) )
31303adant3 1041 . . 3  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  ( (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) ) )
32 eqeq1 2236 . . . . . . 7  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( N  =  ( `  ( 1st `  B ) )  <->  ( `  ( 1st `  A ) )  =  ( `  ( 1st `  B ) ) ) )
33 oveq2 6009 . . . . . . . 8  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( 0..^ N )  =  ( 0..^ ( `  ( 1st `  A ) ) ) )
3433raleqdv 2734 . . . . . . 7  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  <->  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A ) `  x
)  =  ( ( 1st `  B ) `
 x ) ) )
3532, 34anbi12d 473 . . . . . 6  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  <->  ( ( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) ) ) )
36 oveq2 6009 . . . . . . . 8  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( 0 ... N )  =  ( 0 ... ( `  ( 1st `  A ) ) ) )
3736raleqdv 2734 . . . . . . 7  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x )  <->  A. x  e.  ( 0 ... ( `  ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) )
3832, 37anbi12d 473 . . . . . 6  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) )  <-> 
( ( `  ( 1st `  A ) )  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A
) ) ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) )
3935, 38anbi12d 473 . . . . 5  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) )  <->  ( ( ( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) ) )
4039bibi2d 232 . . . 4  |-  ( N  =  ( `  ( 1st `  A ) )  ->  ( ( ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )  <->  ( (
( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) ) ) )
41403ad2ant3 1044 . . 3  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( ( ( ( 1st `  A )  =  ( 1st `  B
)  /\  ( 2nd `  A )  =  ( 2nd `  B ) )  <->  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )  <->  ( (
( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  ( (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ ( `  ( 1st `  A ) ) ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  (
( `  ( 1st `  A
) )  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0 ... ( `  ( 1st `  A ) ) ) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) ) ) )
4231, 41mpbird 167 . 2  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) ) )
43 wlkelvv 16060 . . . 4  |-  ( A  e.  (Walks `  G
)  ->  A  e.  ( _V  X.  _V )
)
44 wlkelvv 16060 . . . 4  |-  ( B  e.  (Walks `  G
)  ->  B  e.  ( _V  X.  _V )
)
45 xpopth 6322 . . . 4  |-  ( ( A  e.  ( _V 
X.  _V )  /\  B  e.  ( _V  X.  _V ) )  ->  (
( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  A  =  B ) )
4643, 44, 45syl2an 289 . . 3  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )
)  ->  ( (
( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) )  <->  A  =  B ) )
47463adant3 1041 . 2  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  A  =  B ) )
48 3anass 1006 . . . 4  |-  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) )  <-> 
( N  =  ( `  ( 1st `  B
) )  /\  ( A. x  e.  (
0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
49 anandi 592 . . . 4  |-  ( ( N  =  ( `  ( 1st `  B ) )  /\  ( A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
)  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) )  <->  ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) ) )
5048, 49bitr2i 185 . . 3  |-  ( ( ( N  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )
)  /\  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) )  <->  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )  /\  A. x  e.  ( 0 ... N ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) )
5150a1i 9 . 2  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( ( ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A
) `  x )  =  ( ( 1st `  B ) `  x
) )  /\  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0 ... N
) ( ( 2nd `  A ) `  x
)  =  ( ( 2nd `  B ) `
 x ) ) )  <->  ( N  =  ( `  ( 1st `  B ) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )  /\  A. x  e.  ( 0 ... N ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) )
5242, 47, 513bitr3d 218 1  |-  ( ( A  e.  (Walks `  G )  /\  B  e.  (Walks `  G )  /\  N  =  ( `  ( 1st `  A
) ) )  -> 
( A  =  B  <-> 
( N  =  ( `  ( 1st `  B
) )  /\  A. x  e.  ( 0..^ N ) ( ( 1st `  A ) `
 x )  =  ( ( 1st `  B
) `  x )  /\  A. x  e.  ( 0 ... N ) ( ( 2nd `  A
) `  x )  =  ( ( 2nd `  B ) `  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   class class class wbr 4083    X. cxp 4717   dom cdm 4719   -->wf 5314   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   0cc0 7999   1c1 8000    - cmin 8317   NN0cn0 9369   ...cfz 10204  ..^cfzo 10338  ♯chash 10997  Word cword 11071  Vtxcvtx 15813  iEdgciedg 15814  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-map 6797  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-wlks 16031
This theorem is referenced by:  uspgr2wlkeq  16076
  Copyright terms: Public domain W3C validator