ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptrcl Unicode version

Theorem mptrcl 5568
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptrcl  |-  ( I  e.  ( F `  X )  ->  X  e.  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)    I( x)    X( x)

Proof of Theorem mptrcl
StepHypRef Expression
1 fvmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
21dmmptss 5100 . 2  |-  dom  F  C_  A
31funmpt2 5227 . . . 4  |-  Fun  F
4 funrel 5205 . . . 4  |-  ( Fun 
F  ->  Rel  F )
53, 4ax-mp 5 . . 3  |-  Rel  F
6 relelfvdm 5518 . . 3  |-  ( ( Rel  F  /\  I  e.  ( F `  X
) )  ->  X  e.  dom  F )
75, 6mpan 421 . 2  |-  ( I  e.  ( F `  X )  ->  X  e.  dom  F )
82, 7sselid 3140 1  |-  ( I  e.  ( F `  X )  ->  X  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    |-> cmpt 4043   dom cdm 4604   Rel wrel 4609   Fun wfun 5182   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by:  psmetdmdm  12964  psmetf  12965  psmet0  12967  psmettri2  12968  psmetres2  12973
  Copyright terms: Public domain W3C validator