ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptrcl Unicode version

Theorem mptrcl 5644
Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptrcl  |-  ( I  e.  ( F `  X )  ->  X  e.  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)    I( x)    X( x)

Proof of Theorem mptrcl
StepHypRef Expression
1 fvmpt2.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
21dmmptss 5166 . 2  |-  dom  F  C_  A
31funmpt2 5297 . . . 4  |-  Fun  F
4 funrel 5275 . . . 4  |-  ( Fun 
F  ->  Rel  F )
53, 4ax-mp 5 . . 3  |-  Rel  F
6 relelfvdm 5590 . . 3  |-  ( ( Rel  F  /\  I  e.  ( F `  X
) )  ->  X  e.  dom  F )
75, 6mpan 424 . 2  |-  ( I  e.  ( F `  X )  ->  X  e.  dom  F )
82, 7sselid 3181 1  |-  ( I  e.  ( F `  X )  ->  X  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    |-> cmpt 4094   dom cdm 4663   Rel wrel 4668   Fun wfun 5252   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by:  bitsval  12108  divsfval  12971  submrcl  13103  issubg  13303  isnsg  13332  issubrng  13755  issubrg  13777  zrhval  14173  psmetdmdm  14560  psmetf  14561  psmet0  14563  psmettri2  14564  psmetres2  14569  plybss  14969
  Copyright terms: Public domain W3C validator