HomeHome Intuitionistic Logic Explorer
Theorem List (p. 161 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 16001-16100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-vprc 16001 vprc 4187 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  _V
 
Theorembj-nvel 16002 nvel 4188 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  A
 
Theorembj-vnex 16003 vnex 4186 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  E. x  x  =  _V
 
Theorembdinex1 16004 Bounded version of inex1 4189. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( A  i^i  B )  e. 
 _V
 
Theorembdinex2 16005 Bounded version of inex2 4190. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( B  i^i  A )  e. 
 _V
 
Theorembdinex1g 16006 Bounded version of inex1g 4191. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   =>    |-  ( A  e.  V  ->  ( A  i^i  B )  e.  _V )
 
Theorembdssex 16007 Bounded version of ssex 4192. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   =>    |-  ( A  C_  B  ->  A  e.  _V )
 
Theorembdssexi 16008 Bounded version of ssexi 4193. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   &    |-  A  C_  B   =>    |-  A  e.  _V
 
Theorembdssexg 16009 Bounded version of ssexg 4194. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
 
Theorembdssexd 16010 Bounded version of ssexd 4195. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A  C_  B )   &    |- BOUNDED  A   =>    |-  ( ph  ->  A  e.  _V )
 
Theorembdrabexg 16011* Bounded version of rabexg 4198. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |- BOUNDED  A   =>    |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
 
Theorembj-inex 16012 The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  i^i  B )  e.  _V )
 
Theorembj-intexr 16013 intexr 4205 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  e.  _V  ->  A  =/=  (/) )
 
Theorembj-intnexr 16014 intnexr 4206 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  =  _V  ->  -. 
 |^| A  e.  _V )
 
Theorembj-zfpair2 16015 Proof of zfpair2 4265 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  { x ,  y }  e.  _V
 
Theorembj-prexg 16016 Proof of prexg 4266 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  { A ,  B }  e.  _V )
 
Theorembj-snexg 16017 snexg 4239 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  { A }  e.  _V )
 
Theorembj-snex 16018 snex 4240 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 { A }  e.  _V
 
Theorembj-sels 16019* If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
 |-  ( A  e.  V  ->  E. x  A  e.  x )
 
Theorembj-axun2 16020* axun2 4495 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
 
Theorembj-uniex2 16021* uniex2 4496 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y  y  =  U. x
 
Theorembj-uniex 16022 uniex 4497 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 U. A  e.  _V
 
Theorembj-uniexg 16023 uniexg 4499 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  U. A  e.  _V )
 
Theorembj-unex 16024 unex 4501 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  u.  B )  e. 
 _V
 
Theorembdunexb 16025 Bounded version of unexb 4502. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A  u.  B )  e.  _V )
 
Theorembj-unexg 16026 unexg 4503 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  u.  B )  e.  _V )
 
Theorembj-sucexg 16027 sucexg 4559 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  suc 
 A  e.  _V )
 
Theorembj-sucex 16028 sucex 4560 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 suc  A  e.  _V
 
14.2.9.1  Delta_0-classical logic
 
Axiomax-bj-d0cl 16029 Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.)
 |- BOUNDED  ph   =>    |- DECID  ph
 
Theorembj-d0clsepcl 16030 Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
 |- DECID  ph
 
14.2.9.2  Inductive classes and the class of natural number ordinals
 
Syntaxwind 16031 Syntax for inductive classes.
 wff Ind  A
 
Definitiondf-bj-ind 16032* Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.)
 |-  (Ind  A 
 <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
 
Theorembj-indsuc 16033 A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
 |-  (Ind  A  ->  ( B  e.  A  ->  suc  B  e.  A ) )
 
Theorembj-indeq 16034 Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
 |-  ( A  =  B  ->  (Ind 
 A 
 <-> Ind 
 B ) )
 
Theorembj-bdind 16035 Boundedness of the formula "the setvar  x is an inductive class". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED Ind  x
 
Theorembj-indint 16036* The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
 |- Ind  |^| { x  e.  A  | Ind  x }
 
Theorembj-indind 16037* If  A is inductive and  B is "inductive in  A", then  ( A  i^i  B ) is inductive. (Contributed by BJ, 25-Oct-2020.)
 |-  (
 (Ind  A  /\  ( (/)  e.  B  /\  A. x  e.  A  ( x  e.  B  ->  suc  x  e.  B ) ) ) 
 -> Ind  ( A  i^i  B ) )
 
Theorembj-dfom 16038 Alternate definition of  om, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
 |-  om  =  |^| { x  | Ind  x }
 
Theorembj-omind 16039  om is an inductive class. (Contributed by BJ, 30-Nov-2019.)
 |- Ind  om
 
Theorembj-omssind 16040  om is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  (Ind 
 A  ->  om  C_  A ) )
 
Theorembj-ssom 16041* A characterization of subclasses of  om. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A. x (Ind  x  ->  A  C_  x )  <->  A  C_  om )
 
Theorembj-om 16042* A set is equal to  om if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x ) ) ) )
 
Theorembj-2inf 16043* Two formulations of the axiom of infinity (see ax-infvn 16046 and bj-omex 16047) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( om  e.  _V  <->  E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y )
 ) )
 
14.2.9.3  The first three Peano postulates

The first three Peano postulates follow from constructive set theory (actually, from its core axioms). The proofs peano1 4655 and peano3 4657 already show this. In this section, we prove bj-peano2 16044 to complete this program. We also prove a preliminary version of the fifth Peano postulate from the core axioms.

 
Theorembj-peano2 16044 Constructive proof of peano2 4656. Temporary note: another possibility is to simply replace sucexg 4559 with bj-sucexg 16027 in the proof of peano2 4656. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  suc  A  e.  om )
 
Theorempeano5set 16045* Version of peano5 4659 when  om  i^i  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( om  i^i  A )  e.  V  ->  (
 ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc 
 x  e.  A ) )  ->  om  C_  A ) )
 
14.2.10  CZF: Infinity

In the absence of full separation, the axiom of infinity has to be stated more precisely, as the existence of the smallest class containing the empty set and the successor of each of its elements.

 
14.2.10.1  The set of natural number ordinals

In this section, we introduce the axiom of infinity in a constructive setting (ax-infvn 16046) and deduce that the class  om of natural number ordinals is a set (bj-omex 16047).

 
Axiomax-infvn 16046* Axiom of infinity in a constructive setting. This asserts the existence of the special set we want (the set of natural numbers), instead of the existence of a set with some properties (ax-iinf 4649) from which one then proves, using full separation, that the wanted set exists (omex 4654). "vn" is for "von Neumann". (Contributed by BJ, 14-Nov-2019.)
 |-  E. x (Ind  x  /\  A. y
 (Ind  y  ->  x  C_  y ) )
 
Theorembj-omex 16047 Proof of omex 4654 from ax-infvn 16046. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.)
 |-  om  e.  _V
 
14.2.10.2  Peano's fifth postulate

In this section, we give constructive proofs of two versions of Peano's fifth postulate.

 
Theorembdpeano5 16048* Bounded version of peano5 4659. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A )
 
Theoremspeano5 16049* Version of peano5 4659 when  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc 
 x  e.  A ) )  ->  om  C_  A )
 
14.2.10.3  Bounded induction and Peano's fourth postulate

In this section, we prove various versions of bounded induction from the basic axioms of CZF (in particular, without the axiom of set induction). We also prove Peano's fourth postulate. Together with the results from the previous sections, this proves from the core axioms of CZF (with infinity) that the set of natural number ordinals satisfies the five Peano postulates and thus provides a model for the set of natural numbers.

 
Theoremfindset 16050* Bounded induction (principle of induction when  A is assumed to be a set) allowing a proof from basic constructive axioms. See find 4660 for a nonconstructive proof of the general case. See bdfind 16051 for a proof when  A is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  ( ( A  C_  om  /\  (/) 
 e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
 )
 
Theorembdfind 16051* Bounded induction (principle of induction when  A is assumed to be bounded), proved from basic constructive axioms. See find 4660 for a nonconstructive proof of the general case. See findset 16050 for a proof when  A is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( A  C_  om 
 /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
 
Theorembj-bdfindis 16052* Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4661 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4661, finds2 4662, finds1 4663. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  (
 ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   =>    |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
 
Theorembj-bdfindisg 16053* Version of bj-bdfindis 16052 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 16052 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  (
 ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   &    |-  F/_ x A   &    |-  F/ x ta   &    |-  ( x  =  A  ->  (
 ph  ->  ta ) )   =>    |-  ( ( ps 
 /\  A. y  e.  om  ( ch  ->  th )
 )  ->  ( A  e.  om  ->  ta )
 )
 
Theorembj-bdfindes 16054 Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 16052 for explanations. From this version, it is easy to prove the bounded version of findes 4664. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   =>    |-  ( ( [. (/)  /  x ].
 ph  /\  A. x  e. 
 om  ( ph  ->  [.
 suc  x  /  x ].
 ph ) )  ->  A. x  e.  om  ph )
 
Theorembj-nn0suc0 16055* Constructive proof of a variant of nn0suc 4665. For a constructive proof of nn0suc 4665, see bj-nn0suc 16069. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) )
 
Theorembj-nntrans 16056 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
 C_  A ) )
 
Theorembj-nntrans2 16057 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  Tr  A )
 
Theorembj-nnelirr 16058 A natural number does not belong to itself. Version of elirr 4602 for natural numbers, which does not require ax-setind 4598. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  -.  A  e.  A )
 
Theorembj-nnen2lp 16059 A version of en2lp 4615 for natural numbers, which does not require ax-setind 4598.

Note: using this theorem and bj-nnelirr 16058, one can remove dependency on ax-setind 4598 from nntri2 6598 and nndcel 6604; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

 |-  (
 ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
 
Theorembj-peano4 16060 Remove from peano4 4658 dependency on ax-setind 4598. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
 
Theorembj-omtrans 16061 The set  om is transitive. A natural number is included in  om. Constructive proof of elnn 4667.

The idea is to use bounded induction with the formula  x  C_ 
om. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with  x  C_  a and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

 |-  ( A  e.  om  ->  A  C_ 
 om )
 
Theorembj-omtrans2 16062 The set  om is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  Tr  om
 
Theorembj-nnord 16063 A natural number is an ordinal class. Constructive proof of nnord 4673. Can also be proved from bj-nnelon 16064 if the latter is proved from bj-omssonALT 16068. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  Ord  A )
 
Theorembj-nnelon 16064 A natural number is an ordinal. Constructive proof of nnon 4671. Can also be proved from bj-omssonALT 16068. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  A  e.  On )
 
Theorembj-omord 16065 The set  om is an ordinal class. Constructive proof of ordom 4668. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  Ord  om
 
Theorembj-omelon 16066 The set  om is an ordinal. Constructive proof of omelon 4670. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  om  e.  On
 
Theorembj-omsson 16067 Constructive proof of omsson 4674. See also bj-omssonALT 16068. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
 |-  om  C_ 
 On
 
Theorembj-omssonALT 16068 Alternate proof of bj-omsson 16067. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  om  C_ 
 On
 
Theorembj-nn0suc 16069* Proof of (biconditional form of) nn0suc 4665 from the core axioms of CZF. See also bj-nn0sucALT 16083. As a characterization of the elements of  om, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  <->  ( A  =  (/) 
 \/  E. x  e.  om  A  =  suc  x ) )
 
14.2.11  CZF: Set induction

In this section, we add the axiom of set induction to the core axioms of CZF.

 
14.2.11.1  Set induction

In this section, we prove some variants of the axiom of set induction.

 
Theoremsetindft 16070* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
 |-  ( A. x F/ y ph  ->  ( A. x (
 A. y  e.  x  [ y  /  x ] ph  ->  ph )  ->  A. x ph ) )
 
Theoremsetindf 16071* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
 |-  F/ y ph   =>    |-  ( A. x (
 A. y  e.  x  [ y  /  x ] ph  ->  ph )  ->  A. x ph )
 
Theoremsetindis 16072* Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ y ph   &    |-  F/ y ps   &    |-  ( x  =  z  ->  ( ph  ->  ps )
 )   &    |-  ( x  =  y 
 ->  ( ch  ->  ph )
 )   =>    |-  ( A. y (
 A. z  e.  y  ps  ->  ch )  ->  A. x ph )
 
Axiomax-bdsetind 16073* Axiom of bounded set induction. (Contributed by BJ, 28-Nov-2019.)
 |- BOUNDED  ph   =>    |-  ( A. a (
 A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
 
Theorembdsetindis 16074* Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ y ph   &    |-  F/ y ps   &    |-  ( x  =  z  ->  ( ph  ->  ps ) )   &    |-  ( x  =  y  ->  ( ch  ->  ph ) )   =>    |-  ( A. y ( A. z  e.  y  ps  ->  ch )  ->  A. x ph )
 
Theorembj-inf2vnlem1 16075* Lemma for bj-inf2vn 16079. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
 
Theorembj-inf2vnlem2 16076* Lemma for bj-inf2vnlem3 16077 and bj-inf2vnlem4 16078. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A. u (
 A. t  e.  u  ( t  e.  A  ->  t  e.  Z ) 
 ->  ( u  e.  A  ->  u  e.  Z ) ) ) )
 
Theorembj-inf2vnlem3 16077* Lemma for bj-inf2vn 16079. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  Z   =>    |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A  C_  Z ) )
 
Theorembj-inf2vnlem4 16078* Lemma for bj-inf2vn2 16080. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A  C_  Z ) )
 
Theorembj-inf2vn 16079* A sufficient condition for  om to be a set. See bj-inf2vn2 16080 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
 )
 
Theorembj-inf2vn2 16080* A sufficient condition for  om to be a set; unbounded version of bj-inf2vn 16079. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  (
 A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
 )
 
Axiomax-inf2 16081* Another axiom of infinity in a constructive setting (see ax-infvn 16046). (Contributed by BJ, 14-Nov-2019.) (New usage is discouraged.)
 |-  E. a A. x ( x  e.  a  <->  ( x  =  (/)  \/  E. y  e.  a  x  =  suc  y ) )
 
Theorembj-omex2 16082 Using bounded set induction and the strong axiom of infinity,  om is a set, that is, we recover ax-infvn 16046 (see bj-2inf 16043 for the equivalence of the latter with bj-omex 16047). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  om  e.  _V
 
Theorembj-nn0sucALT 16083* Alternate proof of bj-nn0suc 16069, also constructive but from ax-inf2 16081, hence requiring ax-bdsetind 16073. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  om  <->  ( A  =  (/) 
 \/  E. x  e.  om  A  =  suc  x ) )
 
14.2.11.2  Full induction

In this section, using the axiom of set induction, we prove full induction on the set of natural numbers.

 
Theorembj-findis 16084* Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 16052 for a bounded version not requiring ax-setind 4598. See finds 4661 for a proof in IZF. From this version, it is easy to prove of finds 4661, finds2 4662, finds1 4663. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   =>    |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
 
Theorembj-findisg 16085* Version of bj-findis 16084 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 16084 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   &    |-  F/_ x A   &    |-  F/ x ta   &    |-  ( x  =  A  ->  (
 ph  ->  ta ) )   =>    |-  ( ( ps 
 /\  A. y  e.  om  ( ch  ->  th )
 )  ->  ( A  e.  om  ->  ta )
 )
 
Theorembj-findes 16086 Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 16084 for explanations. From this version, it is easy to prove findes 4664. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( [. (/)  /  x ]. ph 
 /\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
 )  ->  A. x  e. 
 om  ph )
 
14.2.12  CZF: Strong collection

In this section, we state the axiom scheme of strong collection, which is part of CZF set theory.

 
Axiomax-strcoll 16087* Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function on  a, or equivalently a collection of nonempty classes indexed by  a, and the axiom asserts the existence of a set  b which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. That second conjunct is what makes it "strong", compared to the axiom scheme of collection ax-coll 4170. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a
 ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) )
 
Theoremstrcoll2 16088* Version of ax-strcoll 16087 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
 |-  ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) )
 
Theoremstrcollnft 16089* Closed form of strcollnf 16090. (Contributed by BJ, 21-Oct-2019.)
 |-  ( A. x A. y F/ b ph  ->  ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) ) )
 
Theoremstrcollnf 16090* Version of ax-strcoll 16087 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 16088 with the disjoint variable condition on  b , 
ph replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 16088 will generally suffice: since the theorem asserts the existence of a set  b, supposing that that setvar does not occur in the already defined  ph is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
 A. y  e.  b  E. x  e.  a  ph ) )
 
TheoremstrcollnfALT 16091* Alternate proof of strcollnf 16090, not using strcollnft 16089. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
 A. y  e.  b  E. x  e.  a  ph ) )
 
14.2.13  CZF: Subset collection

In this section, we state the axiom scheme of subset collection, which is part of CZF set theory.

 
Axiomax-sscoll 16092* Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function from  a to  b, or equivalently a collection of nonempty subsets of  b indexed by  a, and the consequent asserts the existence of a subset of  c which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. The axiom asserts the existence, for any sets  a ,  b, of a set  c such that that implication holds for any value of the parameter  z of  ph. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
 A. y  e.  d  E. x  e.  a  ph ) )
 
Theoremsscoll2 16093* Version of ax-sscoll 16092 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
 |-  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
 A. y  e.  d  E. x  e.  a  ph ) )
 
14.2.14  Real numbers
 
Axiomax-ddkcomp 16094 Axiom of Dedekind completeness for Dedekind real numbers: every inhabited upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then Axiom ax-ddkcomp 16094 should be used in place of construction specific results. In particular, axcaucvg 8043 should be proved from it. (Contributed by BJ, 24-Oct-2021.)
 |-  (
 ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e. 
 RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
 ( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
 
14.3  Mathbox for Jim Kingdon
 
14.3.1  Propositional and predicate logic
 
Theoremnnnotnotr 16095 Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 852, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.)
 |-  -.  -.  ( -.  -.  ph  -> 
 ph )
 
14.3.2  The sizes of sets
 
Theorem1dom1el 16096 If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
 |-  (
 ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
 
Theoremss1oel2o 16097 Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4253 which more directly illustrates the contrast with el2oss1o 6547. (Contributed by Jim Kingdon, 8-Aug-2022.)
 |-  (EXMID  <->  A. x ( x 
 C_  1o  ->  x  e. 
 2o ) )
 
Theoremdom1o 16098* Two ways of saying that a set is inhabited. (Contributed by Jim Kingdon, 3-Jan-2026.)
 |-  ( A  e.  V  ->  ( 1o  ~<_  A  <->  E. j  j  e.  A ) )
 
Theoremnnti 16099 Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
 |-  ( ph  ->  A  e.  om )   =>    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u  _E  v  /\  -.  v  _E  u ) ) )
 
Theorem012of 16100 Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16195
  Copyright terms: Public domain < Previous  Next >