| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wlkmex | GIF version | ||
| Description: If there are walks on a graph, the graph is a set. (Contributed by Jim Kingdon, 1-Feb-2026.) |
| Ref | Expression |
|---|---|
| wlkmex | ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝐺 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wlks 16031 | . 2 ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | |
| 2 | 1 | mptrcl 5717 | 1 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝐺 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 if-wif 983 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ⊆ wss 3197 {csn 3666 {cpr 3667 {copab 4144 dom cdm 4719 ⟶wf 5314 ‘cfv 5318 (class class class)co 6001 0cc0 7999 1c1 8000 + caddc 8002 ...cfz 10204 ..^cfzo 10338 ♯chash 10997 Word cword 11071 Vtxcvtx 15813 iEdgciedg 15814 Walkscwlks 16030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 df-wlks 16031 |
| This theorem is referenced by: wlkv 16038 wlkcompim 16063 wlkeq 16065 g0wlk0 16081 |
| Copyright terms: Public domain | W3C validator |